Source file types.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
open AST
open ASTUtils
open Infix
module SEnv = StaticEnv
type env = SEnv.env
module TypingRule = Instrumentation.TypingRule
let ( |: ) = Instrumentation.TypingNoInstr.use_with
let undefined_identifier pos x =
Error.fatal_from pos (Error.UndefinedIdentifier x)
let thing_equal astutil_equal env =
astutil_equal (StaticInterpreter.equal_in_env env)
let expr_equal = thing_equal expr_equal
let type_equal = thing_equal type_equal
let bitwidth_equal = thing_equal bitwidth_equal
let slices_equal = thing_equal slices_equal
let bitfield_equal = thing_equal bitfield_equal
let constraints_equal = thing_equal constraints_equal
let assoc_map map li = List.map (fun (x, y) -> (x, map y)) li
let rec make_anonymous (env : env) (ty : ty) : ty =
match ty.desc with
| T_Named x -> (
match IMap.find_opt x env.global.declared_types with
| Some ty' -> make_anonymous env ty'
| None -> undefined_identifier ty x)
| _ -> ty
let rec get_structure (env : env) (ty : ty) : ty =
let () =
if false then Format.eprintf "@[Getting structure of %a.@]@." PP.pp_ty ty
in
let with_pos = add_pos_from ty in
(match ty.desc with
| T_Named x -> (
match IMap.find_opt x env.global.declared_types with
| None -> undefined_identifier ty x
| Some ty' -> get_structure env ty')
| T_Int _ | T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ -> ty
| T_Tuple tys -> T_Tuple (List.map (get_structure env) tys) |> with_pos
| T_Array (e, t) -> T_Array (e, (get_structure env) t) |> with_pos
| T_Record fields ->
let fields' = assoc_map (get_structure env) fields |> canonical_fields in
T_Record fields' |> with_pos
| T_Exception fields ->
let fields' = assoc_map (get_structure env) fields |> canonical_fields in
T_Exception fields' |> with_pos)
|: TypingRule.Structure
let is_builtin_singular ty =
(match ty.desc with
| T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ | T_Int _ -> true
| _ -> false)
|: TypingRule.BuiltinSingularType
let is_builtin_aggregate ty =
(match ty.desc with
| T_Tuple _ | T_Array _ | T_Record _ | T_Exception _ -> true
| _ -> false)
|: TypingRule.BuiltinAggregateType
let is_builtin ty =
(is_builtin_singular ty || is_builtin_aggregate ty)
|: TypingRule.BuiltinSingularOrAggregate
let is_named ty =
(match ty.desc with T_Named _ -> true | _ -> false) |: TypingRule.NamedType
let is_anonymous ty = (not (is_named ty)) |: TypingRule.AnonymousType
let is_singular env ty =
(is_builtin_singular ty
|| (is_named ty && get_structure env ty |> is_builtin_singular))
|: TypingRule.SingularType
let is_aggregate env ty =
(is_builtin_aggregate ty
|| (is_named ty && get_structure env ty |> is_builtin_aggregate))
|: TypingRule.AggregateType
let rec is_non_primitive ty =
(match ty.desc with
| T_Real | T_String | T_Bool | T_Bits _ | T_Enum _ | T_Int _ -> false
| T_Named _ -> true
| T_Tuple li -> List.exists is_non_primitive li
| T_Array (_, ty) -> is_non_primitive ty
| T_Record fields | T_Exception fields ->
List.exists (fun (_, ty) -> is_non_primitive ty) fields)
|: TypingRule.NonPrimitiveType
let is_primitive ty = (not (is_non_primitive ty)) |: TypingRule.PrimitiveType
let under_constrained_constraints =
let next_uid = ref 0 in
fun var ->
let uid = !next_uid in
incr next_uid;
UnderConstrained (uid, var)
let under_constrained_ty var =
T_Int (under_constrained_constraints var) |> add_dummy_pos
let to_well_constrained ty =
match ty.desc with
| T_Int (UnderConstrained (_uid, var)) -> var_ var |> integer_exact
| _ -> ty
let get_well_constrained_structure env ty =
get_structure env ty |> to_well_constrained
module Domain = struct
module IntSet = Diet.Z
type syntax = AST.int_constraint list
(** Represents the domain of an integer expression. *)
type int_set = Finite of IntSet.t | Top | FromSyntax of syntax
type t =
| D_Bool
| D_String
| D_Real
| D_Symbols of ISet.t (** The domain of an enum is a set of symbols *)
| D_Int of int_set
| D_Bits of int_set (** The domain of a bitvector is given by its width. *)
let add_interval_to_intset acc bot top =
if bot > top then acc
else
let interval = IntSet.Interval.make bot top in
IntSet.add interval acc
let pp_int_set f =
let open Format in
function
| Top -> pp_print_string f "ℤ"
| Finite set -> fprintf f "@[{@,%a}@]" IntSet.pp set
| FromSyntax slices -> PP.pp_int_constraints f slices
let pp f =
let open Format in
function
| D_Bool -> pp_print_string f "𝔹"
| D_String -> pp_print_string f "𝕊"
| D_Real -> pp_print_string f "ℚ"
| D_Symbols li ->
fprintf f "@[{@,%a}@]"
(PP.pp_print_seq ~pp_sep:pp_print_space pp_print_string)
(ISet.to_seq li)
| D_Int set -> pp_int_set f set
| D_Bits set -> fprintf f "@[#bits(%a)@]" pp_int_set set
exception StaticEvaluationTop
let eval (env : env) (e : expr) =
let v =
let e =
try StaticInterpreter.Normalize.normalize env e
with StaticInterpreter.NotYetImplemented -> e
in
try StaticInterpreter.static_eval env e
with StaticInterpreter.StaticEvaluationUnknown ->
raise_notrace StaticEvaluationTop
in
match v with
| L_Int i -> i
| _ ->
failwith
"Type error? Cannot use an expression that is not an int in a \
constraint."
let add_constraint_to_intset env acc = function
| Constraint_Exact e ->
let v = eval env e in
add_interval_to_intset acc v v
| Constraint_Range (bot, top) ->
let bot = eval env bot and top = eval env top in
add_interval_to_intset acc bot top
let int_set_of_int_constraints env constraints =
match constraints with
| [] ->
failwith
"A well-constrained integer cannot have an empty list of constraints."
| _ -> (
try
Finite
(List.fold_left
(add_constraint_to_intset env)
IntSet.empty constraints)
with StaticEvaluationTop -> FromSyntax constraints)
let int_set_to_int_constraints =
let interval_to_constraint interval =
let x = IntSet.Interval.x interval and y = IntSet.Interval.y interval in
let expr_of_z z = L_Int z |> literal in
Constraint_Range (expr_of_z x, expr_of_z y)
in
fun is ->
IntSet.fold
(fun interval acc -> interval_to_constraint interval :: acc)
is []
let rec int_set_raise_interval_op fop op is1 is2 =
match (is1, is2) with
| Top, _ | _, Top -> Top
| Finite is1, Finite is2 ->
Finite
(IntSet.fold
(fun i1 -> IntSet.fold (fun i2 -> IntSet.add (fop i1 i2)) is2)
is1 IntSet.empty)
| Finite is1, FromSyntax _ ->
let s1 = int_set_to_int_constraints is1 in
int_set_raise_interval_op fop op (FromSyntax s1) is2
| FromSyntax _, Finite is2 ->
let s2 = int_set_to_int_constraints is2 in
int_set_raise_interval_op fop op is1 (FromSyntax s2)
| FromSyntax s1, FromSyntax s2 -> (
match constraint_binop op s1 s2 with
| WellConstrained s2 -> FromSyntax s2
| _ -> Top)
let monotone_interval_op op i1 i2 =
let open IntSet.Interval in
make (op (x i1) (x i2)) (op (y i1) (y i2))
let anti_monotone_interval_op op i1 i2 =
let open IntSet.Interval in
make (op (x i1) (y i2)) (op (y i1) (x i2))
let of_literal = function
| L_Int i -> D_Int (Finite (IntSet.singleton i))
| L_Bool _ -> D_Bool
| L_Real _ -> D_Real
| L_String _ -> D_String
| L_BitVector bv ->
D_Bits (Finite (Bitvector.length bv |> Z.of_int |> IntSet.singleton))
let rec of_expr env e =
match e.desc with
| E_Literal v -> of_literal v
| E_Var x -> (
try StaticEnv.lookup_constants env x |> of_literal
with Not_found -> (
try
let ty = StaticEnv.type_of env x in
of_type env ty
with Not_found -> Error.fatal_from e (Error.UndefinedIdentifier x)))
| E_Unop (NEG, e') ->
of_expr env (E_Binop (MINUS, !$0, e') |> add_pos_from e)
| E_Binop (((PLUS | MINUS | MUL) as op), e1, e2) ->
let is1 = match of_expr env e1 with D_Int is -> is | _ -> assert false
and is2 = match of_expr env e2 with D_Int is -> is | _ -> assert false
and fop =
match op with
| PLUS -> monotone_interval_op Z.add
| MINUS -> anti_monotone_interval_op Z.sub
| MUL -> monotone_interval_op Z.mul
| _ -> assert false
in
D_Int (int_set_raise_interval_op fop op is1 is2)
| _ ->
let () =
if false then
Format.eprintf "@[<2>Cannot interpret as int set:@ @[%a@]@]@."
PP.pp_expr e
in
raise StaticEvaluationTop
and of_type env ty =
let ty = make_anonymous env ty in
match ty.desc with
| T_Bool -> D_Bool
| T_String -> D_String
| T_Real -> D_Real
| T_Enum li -> D_Symbols (ISet.of_list li)
| T_Int UnConstrained -> D_Int Top
| T_Int (UnderConstrained (_uid, var)) ->
D_Int (FromSyntax [ Constraint_Exact (var_ var) ])
| T_Int (WellConstrained constraints) ->
D_Int (int_set_of_int_constraints env constraints)
| T_Bits (width, _) -> (
try
match of_expr env width with
| D_Int (Finite int_set as d) ->
if Z.equal (IntSet.cardinal int_set) Z.one then D_Bits d
else raise StaticEvaluationTop
| D_Int (FromSyntax [ Constraint_Exact _ ] as d) -> D_Bits d
| _ -> raise StaticEvaluationTop
with StaticEvaluationTop ->
D_Bits (FromSyntax [ Constraint_Exact width ]))
| T_Array _ | T_Exception _ | T_Record _ | T_Tuple _ ->
failwith "Unimplemented: domain of a non singular type."
| T_Named _ -> assert false
let mem v d =
match (v, d) with
| L_Bool _, D_Bool | L_Real _, D_Real -> true
| L_Bool _, _ | L_Real _, _ | _, D_Bool | _, D_Real -> false
| L_BitVector _, D_Bits Top -> true
| L_BitVector bv, D_Bits (Finite intset) ->
IntSet.mem (Bitvector.length bv |> Z.of_int) intset
| L_BitVector _, _ | _, D_Bits _ -> false
| L_Int _, D_Int Top -> true
| L_Int i, D_Int (Finite intset) -> IntSet.mem i intset
| L_Int _, _ | _, D_Int _ -> false
| L_String _, D_String -> true
| L_String _, _ -> false
let equal d1 d2 =
match (d1, d2) with
| D_Bool, D_Bool | D_String, D_String | D_Real, D_Real -> true
| D_Symbols s1, D_Symbols s2 -> ISet.equal s1 s2
| D_Bits Top, D_Bits Top | D_Int Top, D_Int Top -> true
| D_Int (Finite is1), D_Int (Finite is2)
| D_Bits (Finite is1), D_Bits (Finite is2) ->
IntSet.equal is1 is2
| _ -> false
let compare _d1 _d2 = assert false
let syntax_is_subset env is1 is2 =
constraints_equal env is1 is2
let int_set_is_subset env is1 is2 =
match (is1, is2) with
| _, Top -> true
| Top, _ -> false
| Finite is1, Finite is2 -> IntSet.(is_empty (diff is1 is2))
| FromSyntax is1, FromSyntax is2 -> syntax_is_subset env is1 is2
| _ -> false
let is_subset env d1 d2 =
let () =
if false then Format.eprintf "Is %a a subset of %a?@." pp d1 pp d2
in
match (d1, d2) with
| D_Bool, D_Bool | D_String, D_String | D_Real, D_Real -> true
| D_Symbols s1, D_Symbols s2 -> ISet.subset s1 s2
| D_Bits is1, D_Bits is2 | D_Int is1, D_Int is2 ->
int_set_is_subset env is1 is2
| _ -> false
let get_width_singleton_opt = function
| D_Bits (Finite int_set) ->
if Z.equal (IntSet.cardinal int_set) Z.one then
Some (IntSet.min_elt int_set |> IntSet.Interval.x)
else None
| _ -> None
end
let is_bits_width_fixed env ty =
match ty.desc with
| T_Bits _ -> (
let open Domain in
match of_type env ty with
| D_Int (Finite int_set) -> IntSet.cardinal int_set = Z.one
| D_Int Top -> false
| _ -> failwith "Wrong domain for a bitwidth.")
| _ -> failwith "Wrong type for some bits."
let _is_bits_width_constrained env ty = not (is_bits_width_fixed env ty)
let rec subtypes_names env s1 s2 =
if String.equal s1 s2 then true
else
match IMap.find_opt s1 env.SEnv.global.subtypes with
| None -> false
| Some s1' -> subtypes_names env s1' s2
let subtypes env t1 t2 =
(match (t1.desc, t2.desc) with
| T_Named s1, T_Named s2 -> subtypes_names env s1 s2
| _ -> false)
|: TypingRule.Subtype
let rec bitfields_included env bfs1 bfs2 =
let rec mem_bfs bfs2 bf1 =
match find_bitfield_opt (bitfield_get_name bf1) bfs2 with
| None -> false
| Some (BitField_Simple _ as bf2) -> bitfield_equal env bf1 bf2
| Some (BitField_Nested (name2, slices2, bfs2') as bf2) -> (
match bf1 with
| BitField_Simple _ -> bitfield_equal env bf1 bf2
| BitField_Nested (name1, slices1, bfs1) ->
String.equal name1 name2
&& slices_equal env slices1 slices2
&& incl_bfs bfs1 bfs2'
| BitField_Type _ -> false)
| Some (BitField_Type (name2, slices2, ty2) as bf2) -> (
match bf1 with
| BitField_Simple _ -> bitfield_equal env bf1 bf2
| BitField_Nested _ -> false
| BitField_Type (name1, slices1, ty1) ->
String.equal name1 name2
&& slices_equal env slices1 slices2
&& structural_subtype_satisfies env ty1 ty2)
and incl_bfs bfs1 bfs2 = List.for_all (mem_bfs bfs2) bfs1 in
incl_bfs bfs1 bfs2
and structural_subtype_satisfies env t s =
(match ((make_anonymous env s).desc, (make_anonymous env t).desc) with
| T_Int _, T_Int _ -> true
| T_Int _, _ -> false
| T_Real, T_Real -> true
| T_Real, _ -> false
| T_String, T_String -> true
| T_String, _ -> false
| T_Bool, T_Bool -> true
| T_Bool, _ -> false
| T_Enum li_s, T_Enum li_t -> list_equal String.equal li_s li_t
| T_Enum _, _ -> false
| T_Bits (w_s, bf_s), T_Bits (w_t, bf_t) -> (
match (bf_s, bf_t) with
| [], _ -> true
| _, [] -> false
| bfs_s, bfs_t ->
bitwidth_equal env w_s w_t && bitfields_included env bfs_s bfs_t)
| T_Bits _, _ -> false
| T_Array (length_s, ty_s), T_Array (length_t, ty_t) -> (
type_equal env ty_s ty_t
&&
match (length_s, length_t) with
| ArrayLength_Expr length_s, ArrayLength_Expr length_t ->
expr_equal env length_s length_t
| ArrayLength_Enum (name_s, _), ArrayLength_Enum (name_t, _) ->
String.equal name_s name_t
| ArrayLength_Enum (_, _), ArrayLength_Expr _
| ArrayLength_Expr _, ArrayLength_Enum (_, _) ->
false)
| T_Array _, _ -> false
| T_Tuple li_s, T_Tuple li_t ->
List.compare_lengths li_s li_t = 0
&& List.for_all2 (type_satisfies env) li_t li_s
| T_Tuple _, _ -> false
| T_Exception fields_s, T_Exception fields_t
| T_Record fields_s, T_Record fields_t ->
List.for_all
(fun (name_s, ty_s) ->
List.exists
(fun (name_t, ty_t) ->
String.equal name_s name_t && type_equal env ty_s ty_t)
fields_t)
fields_s
| T_Exception _, _ | T_Record _, _ -> false
| T_Named _, _ -> assert false)
|: TypingRule.StructuralSubtypeSatisfaction
and domain_subtype_satisfies env t s =
(let s_struct = get_structure env s in
match s_struct.desc with
| T_Tuple _ | T_Array _ | T_Record _ | T_Exception _ -> true
| T_Real | T_String | T_Bool | T_Enum _ | T_Int _ ->
let d_s = Domain.of_type env s_struct
and d_t = get_structure env t |> Domain.of_type env in
let () =
if false then
Format.eprintf "domain_subtype_satisfies: %a included in %a?@."
Domain.pp d_t Domain.pp d_s
in
Domain.is_subset env d_t d_s
| T_Bits _ -> (
let t_struct = get_structure env t in
let t_domain = Domain.of_type env t_struct
and s_domain = Domain.of_type env s_struct in
let () =
if false then
Format.eprintf "Is %a included in %a?@." Domain.pp t_domain Domain.pp
s_domain
in
match
( Domain.get_width_singleton_opt s_domain,
Domain.get_width_singleton_opt t_domain )
with
| Some w_s, Some w_t -> Z.equal w_s w_t
| _ -> Domain.is_subset env t_domain s_domain)
| T_Named _ ->
assert false)
|: TypingRule.DomainSubtypeSatisfaction
and subtype_satisfies env t s =
let () =
if false then
let b1 = structural_subtype_satisfies env t s in
let b2 = domain_subtype_satisfies env t s in
Format.eprintf "%a subtypes %a ? struct: %B -- domain: %B@." PP.pp_ty t
PP.pp_ty s b1 b2
in
(structural_subtype_satisfies env t s && domain_subtype_satisfies env t s)
|: TypingRule.SubtypeSatisfaction
and type_satisfies env t s =
(
subtypes env t s
|| ((is_anonymous t || is_anonymous s) && subtype_satisfies env t s)
||
match (t.desc, (get_structure env s).desc) with
| T_Bits (width_t, []), T_Bits (width_s, _) ->
bitwidth_equal env width_t width_s
| _ -> false)
|: TypingRule.TypeSatisfaction
let rec type_clashes env t s =
((subtypes env s t || subtypes env t s)
||
let s_struct = get_structure env s and t_struct = get_structure env t in
match (s_struct.desc, t_struct.desc) with
| T_Int _, T_Int _
| T_Real, T_Real
| T_String, T_String
| T_Bits _, T_Bits _
| T_Bool, T_Bool ->
true
| T_Enum li_s, T_Enum li_t -> list_equal String.equal li_s li_t
| T_Array (_, ty_s), T_Array (_, ty_t) -> type_clashes env ty_s ty_t
| T_Tuple li_s, T_Tuple li_t ->
List.compare_lengths li_s li_t = 0
&& List.for_all2 (type_clashes env) li_s li_t
| _ -> false)
|: TypingRule.TypeClash
let subprogram_clashes env (f1 : func) (f2 : func) =
String.equal f1.name f2.name
&& List.compare_lengths f1.args f2.args = 0
&& List.for_all2
(fun (_, t1) (_, t2) -> type_clashes env t1 t2)
f1.args f2.args
let supertypes_set (env : env) =
let rec aux acc x =
let acc = ISet.add x acc in
match IMap.find_opt x env.global.subtypes with
| Some x' -> aux acc x'
| None -> acc
in
aux ISet.empty
let find_named_lowest_common_supertype env x1 x2 =
let set1 = supertypes_set env x1 in
let rec aux x =
if ISet.mem x set1 then Some x
else
match IMap.find_opt x env.global.subtypes with
| None -> None
| Some x' -> aux x'
in
aux x2
let rec lowest_common_ancestor env s t =
(if type_equal env s t then Some s
else
match (s.desc, t.desc) with
| T_Named name_s, T_Named name_t -> (
match find_named_lowest_common_supertype env name_s name_t with
| None -> None
| Some name -> Some (T_Named name |> add_dummy_pos))
| _ -> (
let struct_s = get_structure env s
and struct_t = get_structure env t in
match (struct_s.desc, struct_t.desc) with
| T_Array _, T_Array _ when type_equal env struct_s struct_t -> (
match (s.desc, t.desc) with
| T_Named _, T_Named _ -> assert false
| T_Named _, _ -> Some s
| _, T_Named _ -> Some t
| _ -> assert false)
| T_Tuple li_s, T_Tuple li_t
when List.compare_lengths li_s li_t = 0
&& List.for_all2 (type_satisfies env) li_s li_t
&& List.for_all2 (type_satisfies env) li_t li_s -> (
match (s.desc, t.desc) with
| T_Named _, T_Named _ -> assert false
| T_Named _, _ -> Some s
| _, T_Named _ -> Some t
| _ ->
let maybe_ancestors =
List.map2 (lowest_common_ancestor env) li_s li_t
in
let ancestors = List.filter_map Fun.id maybe_ancestors in
if List.compare_lengths ancestors li_s = 0 then
Some (add_dummy_pos (T_Tuple ancestors))
else None)
| T_Int (UnderConstrained _), T_Int _ ->
Some s
| T_Int _, T_Int (UnderConstrained _) ->
Some t
| T_Int (WellConstrained cs_s), T_Int (WellConstrained cs_t) -> (
match (s.desc, t.desc) with
| T_Named _, T_Named _ -> assert false
| T_Named _, _ -> Some s
| _, T_Named _ -> Some t
| _ ->
Some (add_dummy_pos (T_Int (WellConstrained (cs_s @ cs_t)))))
| T_Int UnConstrained, T_Int _ -> (
match (s.desc, t.desc) with
| T_Named _, T_Named _ -> assert false
| T_Named _, _ -> Some s
| _, T_Named _ -> assert false
| _, _ -> Some (add_dummy_pos (T_Int UnConstrained)))
| T_Int _, T_Int UnConstrained -> (
match (s.desc, t.desc) with
| T_Named _, T_Named _ -> assert false
| T_Named _, _ -> assert false
| _, T_Named _ -> Some t
| _, _ -> Some (add_dummy_pos (T_Int UnConstrained)))
| _ -> None))
|: TypingRule.LowestCommonAncestor