Source file StaticInterpreter.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
open AST
open ASTUtils
open Infix
module SEnv = StaticEnv
type env = SEnv.env
let fatal = Error.fatal
let fatal_from = Error.fatal_from
exception StaticEvaluationUnknown
exception NotYetImplemented
let value_as_int pos = function
| L_Int i -> (
try Z.to_int i
with Z.Overflow ->
failwith "Cannot slice with an integer more than machine size.")
| v ->
fatal_from pos (Error.MismatchType (PP.literal_to_string v, [ integer' ]))
let is_positive z = Z.sign z != -1
let is_strict_positive z = Z.sign z = 1
let bv_same_length b1 b2 = Bitvector.(length b1 = length b2)
let exp_real q z =
if Q.sign q = 0 then Q.zero
else
let q, z = if is_positive z then (q, z) else (Q.inv q, Z.neg z) in
let num = Q.num q and den = Q.den q in
let i = Z.to_int z in
let res_num = Z.pow num i and res_den = Z.pow den i in
Q.(res_num /// res_den)
let binop_values pos op v1 v2 =
match (op, v1, v2) with
| PLUS, L_Int v1, L_Int v2 -> L_Int (Z.add v1 v2)
| MUL, L_Int v1, L_Int v2 -> L_Int (Z.mul v1 v2)
| MINUS, L_Int v1, L_Int v2 -> L_Int (Z.sub v1 v2)
| DIV, L_Int v1, L_Int v2 when is_strict_positive v2 && Z.divisible v1 v2 ->
L_Int (Z.divexact v1 v2)
| DIVRM, L_Int v1, L_Int v2 when is_strict_positive v2 ->
L_Int (Z.fdiv v1 v2)
| MOD, L_Int v1, L_Int v2 when is_strict_positive v2 ->
L_Int Z.(sub v1 (mul v2 (fdiv v1 v2)))
| POW, L_Int v1, L_Int v2 when is_positive v2 -> L_Int Z.(pow v1 (to_int v2))
| SHL, L_Int v1, L_Int v2 when is_positive v2 ->
L_Int Z.(shift_left v1 (to_int v2))
| SHR, L_Int v1, L_Int v2 when is_positive v2 ->
L_Int Z.(shift_right v1 (to_int v2))
| EQ_OP, L_Int v1, L_Int v2 -> L_Bool (Z.equal v1 v2)
| NEQ, L_Int v1, L_Int v2 -> L_Bool (not (Z.equal v1 v2))
| LEQ, L_Int v1, L_Int v2 -> L_Bool (Z.leq v1 v2)
| LT, L_Int v1, L_Int v2 -> L_Bool (Z.lt v1 v2)
| GEQ, L_Int v1, L_Int v2 -> L_Bool (Z.geq v1 v2)
| GT, L_Int v1, L_Int v2 -> L_Bool (Z.gt v1 v2)
| BAND, L_Bool b1, L_Bool b2 -> L_Bool (b1 && b2)
| BOR, L_Bool b1, L_Bool b2 -> L_Bool (b1 || b2)
| BEQ, L_Bool b1, L_Bool b2 -> L_Bool (b1 == b2)
| IMPL, L_Bool b1, L_Bool b2 -> L_Bool ((not b1) || b2)
| EQ_OP, L_Bool b1, L_Bool b2 -> L_Bool (b1 == b2)
| NEQ, L_Bool b1, L_Bool b2 -> L_Bool (b1 <> b2)
| PLUS, L_Real v1, L_Real v2 -> L_Real (Q.add v1 v2)
| MUL, L_Real v1, L_Real v2 -> L_Real (Q.mul v1 v2)
| MINUS, L_Real v1, L_Real v2 -> L_Real (Q.sub v1 v2)
| RDIV, L_Real v1, L_Real v2 -> L_Real (Q.div v1 v2)
| POW, L_Real q1, L_Int z2 -> L_Real (exp_real q1 z2)
| EQ_OP, L_Real v1, L_Real v2 -> L_Bool (Q.equal v1 v2)
| NEQ, L_Real v1, L_Real v2 -> L_Bool (not (Q.equal v1 v2))
| LEQ, L_Real v1, L_Real v2 -> L_Bool (Q.leq v1 v2)
| LT, L_Real v1, L_Real v2 -> L_Bool (Q.lt v1 v2)
| GEQ, L_Real v1, L_Real v2 -> L_Bool (Q.geq v1 v2)
| GT, L_Real v1, L_Real v2 -> L_Bool (Q.gt v1 v2)
| EQ_OP, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_Bool (Bitvector.equal b1 b2)
| NEQ, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_Bool (not @@ Bitvector.equal b1 b2)
| OR, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_BitVector (Bitvector.logor b1 b2)
| AND, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_BitVector (Bitvector.logand b1 b2)
| EOR, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_BitVector (Bitvector.logxor b1 b2)
| PLUS, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_BitVector
Bitvector.(
of_z (length b1) (Z.add (to_z_unsigned b1) (to_z_unsigned b2)))
| MINUS, L_BitVector b1, L_BitVector b2 when bv_same_length b1 b2 ->
L_BitVector
Bitvector.(
of_z (length b1) (Z.sub (to_z_unsigned b1) (to_z_unsigned b2)))
| PLUS, L_BitVector b1, L_Int z2 ->
L_BitVector Bitvector.(of_z (length b1) (Z.add (to_z_unsigned b1) z2))
| MINUS, L_BitVector b1, L_Int z2 ->
L_BitVector Bitvector.(of_z (length b1) (Z.sub (to_z_unsigned b1) z2))
| EQ_OP, L_String s1, L_String s2 -> L_Bool (String.equal s1 s2)
| NEQ, L_String s1, L_String s2 -> L_Bool (not (String.equal s1 s2))
| _ -> fatal_from pos (Error.UnsupportedBinop (op, v1, v2))
let unop_values pos op v =
match (op, v) with
| NEG, L_Int i -> L_Int (Z.neg i)
| NEG, L_Real r -> L_Real (Q.neg r)
| BNOT, L_Bool b -> L_Bool (not b)
| NOT, L_BitVector bv -> L_BitVector (Bitvector.lognot bv)
| _ -> fatal_from pos (Error.UnsupportedUnop (op, v))
let int_max x y = if x >= y then x else y
let rec static_eval (env : SEnv.env) : expr -> literal =
let rec expr_ e =
match e.desc with
| E_Literal v -> v
| E_Var x -> (
try SEnv.lookup_constants env x
with Not_found ->
let () =
if false then
Format.eprintf "Failed to lookup %S in env: %a@." x
StaticEnv.pp_env env
in
if SEnv.is_undefined x env then
Error.fatal_from e (Error.UndefinedIdentifier x)
else raise StaticEvaluationUnknown)
| E_Binop (op, e1, e2) ->
let v1 = expr_ e1 and v2 = expr_ e2 in
binop_values e op v1 v2
| E_Unop (op, e) ->
let v = expr_ e in
unop_values e op v
| E_Slice (e', slices) ->
let positions = slices_to_positions env slices in
let pos_max = List.fold_left int_max 0 positions in
let bv =
match expr_ e' with
| L_Int i -> Bitvector.of_z (pos_max + 1) i
| L_BitVector bv when Bitvector.length bv > pos_max -> bv
| v ->
fatal_from e
@@ Error.MismatchType
(PP.literal_to_string v, [ integer'; default_t_bits ])
in
L_BitVector (Bitvector.extract_slice bv positions)
| E_Cond (e_cond, e1, e2) ->
let v_cond = expr_ e_cond in
let b =
match v_cond with
| L_Bool b -> b
| _ ->
fatal_from e
@@ Error.MismatchType (PP.literal_to_string v_cond, [ T_Bool ])
in
if b then expr_ e1 else expr_ e2
| _ -> fatal_from e (Error.UnsupportedExpr e)
in
expr_
and slices_to_positions env =
let check_positive e x =
if x >= 0 then x
else fatal_from e @@ Error.MismatchType (string_of_int x, [ integer' ])
in
let eval_to_int e = static_eval env e |> value_as_int e |> check_positive e in
let slice_to_positions =
let interval top len = List.init len (( - ) top) in
function
| Slice_Single e -> [ eval_to_int e ]
| Slice_Range (etop, ebot) ->
let pbot = eval_to_int ebot and ptop = eval_to_int etop in
interval ptop (ptop - pbot + 1)
| Slice_Length (ebot, elength) ->
let pbot = eval_to_int ebot and plength = eval_to_int elength in
let ptop = pbot + plength - 1 in
interval ptop plength
| Slice_Star (efactor, elength) ->
let pfactor = eval_to_int efactor and plength = eval_to_int elength in
let ptop = (pfactor * plength) + plength - 1 in
interval ptop plength
in
fun slices -> slices |> List.map slice_to_positions |> List.concat
module Normalize = struct
type atom = identifier
(** Our basic variables. *)
module AtomOrdered = struct
type t = atom
let compare = String.compare
end
module AMap = Map.Make (AtomOrdered)
(** A map from atoms. *)
(** A unitary monomial.
They are unitary in the sense that they do not have any factors:
{m 3 \times X^2 } is not unitary, while {m x^2 } is.
For example: {m X^2 + Y^4 } represented by {m X \to 2, Y \to 4 },
and {m 1 } is represented by the empty map. *)
type monomial =
| Prod of int AMap.t (** Maps each variable to its exponent. *)
module MonomialOrdered = struct
type t = monomial
let compare (Prod ms1) (Prod ms2) = AMap.compare Int.compare ms1 ms2
end
(** A map from a monomial. *)
module MMap = struct
include Map.Make (MonomialOrdered)
let filter_map f m =
fold
(fun key v r -> match f key v with None -> r | Some v -> add key v r)
m empty
end
(** A polynomial.
For example, {m X^2 - X + 4 } is represented by
{m X^2 \to 1, X \to -1, 1 \to 4 } *)
type polynomial =
| Sum of Z.t MMap.t (** Maps each monomial to its factor. *)
module PolynomialOrdered = struct
type t = polynomial
let compare (Sum p1) (Sum p2) = MMap.compare Z.compare p1 p2
end
module PMap = Map.Make (PolynomialOrdered)
(** Map from polynomials. *)
(** A constraint on a numerical value. *)
type sign =
| Null
| StrictPositive
| Positive
| Negative
| StrictNegative
| NotNull
(** A conjunctive logical formulae with polynomials.
For example, {m X^2 \leq 0 } is represented with {m X^2 \to \leq 0 }.
*)
type ctnts = Conjunction of sign PMap.t | Bottom
(** Case disjunctions. *)
type 'a disjunction = Disjunction of 'a list
type ir_expr = (ctnts * polynomial) disjunction
(** Constrained polynomials.
This is a branched tree of polynomials.
*)
let pp_mono f (Prod mono, factor) =
let open Format in
let mono = AMap.filter (fun _ p -> p != 0) mono in
if AMap.is_empty mono then Z.pp_print f factor
else (
pp_open_hbox f ();
let pp_sep f () = fprintf f "@ \u{d7} " in
if Z.equal factor Z.one then ()
else (
Z.pp_print f factor;
pp_sep f ());
PP.pp_print_seq ~pp_sep
(fun f (x, p) ->
pp_print_string f x;
match p with
| 1 -> ()
| 2 -> pp_print_string f "\u{b2}"
| _ -> fprintf f "^%d" p)
f (AMap.to_seq mono);
pp_close_box f ())
let pp_poly f (Sum poly) =
let open Format in
let poly = MMap.filter (fun _ f -> not (Z.equal Z.zero f)) poly in
if MMap.is_empty poly then pp_print_string f "0"
else (
pp_open_hvbox f 2;
let pp_sep f () = fprintf f "@ + " in
PP.pp_print_seq ~pp_sep pp_mono f (MMap.to_seq poly);
pp_close_box f ())
let pp_sign f s =
let s =
match s with
| Null -> "= 0"
| NotNull -> "!= 0"
| StrictPositive -> "> 0"
| Positive -> "\u{2265} 0"
| Negative -> "\u{2264} 0"
| StrictNegative -> "< 0"
in
Format.pp_print_string f s
let pp_ctnt f (p, s) =
let open Format in
fprintf f "@[<h>%a@ %a@]" pp_poly p pp_sign s
let pp_ctnts f =
let open Format in
function
| Bottom -> pp_print_string f "\u{22a5}"
| Conjunction m ->
if PMap.is_empty m then pp_print_string f "\u{22a4}"
else
let pp_sep f () = fprintf f "@ \u{2227} " in
fprintf f "@[<hov 2>%a@]"
(PP.pp_print_seq ~pp_sep pp_ctnt)
(PMap.to_seq m)
let pp_ctnts_and_poly f (ctnts, p) =
Format.fprintf f "@[<2>%a@ -> %a@]" pp_ctnts ctnts pp_poly p
let pp_ir f (Disjunction li) =
let open Format in
fprintf f "@[<v 2>%a@]"
(pp_print_list ~pp_sep:pp_print_space pp_ctnts_and_poly)
li
let disjunction map = Disjunction map
let ctnts_true : ctnts = Conjunction PMap.empty
let ctnts_false : ctnts = Bottom
let always e = Disjunction [ (ctnts_true, e) ]
let mono_one = Prod AMap.empty
let mono_of_var s = Prod (AMap.singleton s 1)
let poly_zero = Sum MMap.empty
let poly_of_var s = Sum (MMap.singleton (mono_of_var s) Z.one)
let poly_of_z i = Sum (MMap.singleton mono_one i)
let poly_of_int i = Z.of_int i |> poly_of_z
let poly_neg (Sum monos) = Sum (MMap.map Z.neg monos)
let poly_of_val = function
| L_Int i -> poly_of_z i
| v ->
Error.fatal_unknown_pos
(Error.MismatchType (PP.literal_to_string v, [ integer' ]))
let sign_not = function
| NotNull -> Null
| Null -> NotNull
| Positive -> StrictNegative
| Negative -> StrictPositive
| StrictPositive -> Negative
| StrictNegative -> Positive
let sign_minus = function
| (NotNull | Null) as s -> s
| Positive -> Negative
| Negative -> Positive
| StrictPositive -> StrictNegative
| StrictNegative -> StrictPositive
exception ConjunctionBottomInterrupt
let sign_and _p s1 s2 =
match (s1, s2) with
| Null, Null
| Null, Positive
| Positive, Null
| Negative, Null
| Null, Negative
| Negative, Positive
| Positive, Negative ->
Some Null
| StrictPositive, StrictPositive
| StrictPositive, Positive
| Positive, StrictPositive
| Positive, NotNull
| NotNull, Positive
| StrictPositive, NotNull
| NotNull, StrictPositive ->
Some StrictPositive
| Positive, Positive -> Some Positive
| Negative, Negative -> Some Negative
| NotNull, NotNull -> Some NotNull
| StrictNegative, StrictNegative
| StrictNegative, Negative
| Negative, StrictNegative
| Negative, NotNull
| NotNull, Negative
| NotNull, StrictNegative
| StrictNegative, NotNull ->
Some StrictNegative
| Null, NotNull
| NotNull, Null
| Negative, StrictPositive
| StrictPositive, Negative
| StrictNegative, Positive
| Positive, StrictNegative
| Null, StrictPositive
| StrictPositive, Null
| Null, StrictNegative
| StrictNegative, Null
| StrictNegative, StrictPositive
| StrictPositive, StrictNegative ->
raise_notrace ConjunctionBottomInterrupt
let constant_satisfies c s =
let open Z in
match s with
| Null -> equal c zero
| NotNull -> not (equal c zero)
| Positive -> geq c zero
| StrictPositive -> gt c zero
| Negative -> leq c zero
| StrictNegative -> lt c zero
let ctnts_of_bool b = if b then ctnts_true else ctnts_false
let ctnts_not = function
| Bottom -> ctnts_true
| Conjunction ctnts -> (
try Conjunction (PMap.map sign_not ctnts)
with ConjunctionBottomInterrupt -> Bottom)
let sign_compare = Stdlib.compare
let mono_compare = MonomialOrdered.compare
let poly_compare (Sum p1) (Sum p2) = MMap.compare Z.compare p1 p2
let ctnts_compare cs1 cs2 =
match (cs1, cs2) with
| Bottom, Bottom -> 0
| Bottom, _ -> 1
| _, Bottom -> -1
| Conjunction ctnts1, Conjunction ctnts2 ->
PMap.compare sign_compare ctnts1 ctnts2
let ir_compare (Disjunction li1) (Disjunction li2) =
ASTUtils.list_compare
(fun (cs1, p1) (cs2, p2) ->
let n = ctnts_compare cs1 cs2 in
if n = 0 then poly_compare p1 p2 else n)
li1 li2
let add_mono_to_poly =
let updater factor = function
| None -> Some factor
| Some f ->
let f' = Z.add f factor in
if Z.equal f' Z.zero then None else Some f'
in
fun mono factor -> MMap.update mono (updater factor)
let add_polys : polynomial -> polynomial -> polynomial =
fun (Sum monos1) (Sum monos2) ->
Sum (MMap.union (fun _mono c1 c2 -> Some (Z.add c1 c2)) monos1 monos2)
let mult_monos : monomial -> monomial -> monomial =
fun (Prod map1) (Prod map2) ->
Prod (AMap.union (fun _ p1 p2 -> Some (p1 + p2)) map1 map2)
let mult_polys : polynomial -> polynomial -> polynomial =
fun (Sum monos1) (Sum monos2) ->
Sum
(MMap.fold
(fun m1 f1 ->
MMap.fold
(fun m2 f2 -> add_mono_to_poly (mult_monos m1 m2) (Z.mul f1 f2))
monos2)
monos1 MMap.empty)
let ctnts_and : ctnts -> ctnts -> ctnts =
fun c1 c2 ->
match (c1, c2) with
| Bottom, _ | _, Bottom -> Bottom
| Conjunction ctnts1, Conjunction ctnts2 -> (
try Conjunction (PMap.union sign_and ctnts1 ctnts2)
with ConjunctionBottomInterrupt -> Bottom)
let restrict (Disjunction ctntss1) (Disjunction li2) =
Disjunction
(ASTUtils.list_cross
(fun ctnts1 (ctnts2, e2) -> (ctnts_and ctnts1 ctnts2, e2))
ctntss1 li2)
let disjunction_or (Disjunction li1) (Disjunction li2) =
Disjunction (li1 @ li2)
let cross_num (Disjunction li1) (Disjunction li2) f =
let on_pair (ctnts1, e1) (ctnts2, e2) =
(ctnts_and ctnts1 ctnts2, f e1 e2)
in
Disjunction (ASTUtils.list_cross on_pair li1 li2)
let map_num f (Disjunction li1 : ir_expr) : ir_expr =
Disjunction (List.map (fun (ctnt, e) -> (ctnt, f e)) li1)
let disjunction_cross f (Disjunction li1) (Disjunction li2) =
Disjunction (ASTUtils.list_cross f li1 li2)
let ir_to_cond sign (Disjunction li2) =
Disjunction
(List.map
(fun (ctnts, p) ->
ctnts_and (Conjunction (PMap.singleton p sign)) ctnts)
li2)
let rec make_anonymous (env : env) (ty : ty) : ty =
match ty.desc with
| T_Named x -> (
match IMap.find_opt x env.global.declared_types with
| Some ty' -> make_anonymous env ty'
| None -> fatal_from ty (Error.UndefinedIdentifier x))
| _ -> ty
let rec to_ir env (e : expr) : ir_expr =
match e.desc with
| E_Literal (L_Int i) -> poly_of_z i |> always
| E_Var s -> (
try StaticEnv.lookup_constants env s |> poly_of_val |> always
with Not_found -> (
try
let ty = StaticEnv.type_of env s in
let ty1 = make_anonymous env ty in
match ty1.desc with
| T_Int (WellConstrained [ Constraint_Exact e ]) -> to_ir env e
| T_Int _ -> poly_of_var s |> always
| _ ->
Error.fatal_unknown_pos
(Error.ConflictingTypes ([ integer' ], ty1))
with Not_found ->
Error.fatal_unknown_pos (Error.UndefinedIdentifier s)))
| E_Binop (PLUS, e1, e2) ->
let ir1 = to_ir env e1 and ir2 = to_ir env e2 in
cross_num ir1 ir2 add_polys
| E_Binop (MINUS, e1, e2) ->
let e2 = E_Unop (NEG, e2) |> ASTUtils.add_pos_from_st e2 in
E_Binop (PLUS, e1, e2) |> ASTUtils.add_pos_from_st e |> to_ir env
| E_Binop (MUL, e1, e2) ->
let ir1 = to_ir env e1 and ir2 = to_ir env e2 in
cross_num ir1 ir2 mult_polys
| E_Binop (SHL, e1, { desc = E_Literal (L_Int i2); _ }) when Z.leq Z.zero i2
->
let ir1 = to_ir env e1 and f2 = Z.shift_left Z.one (Z.to_int i2) in
map_num
(fun (Sum monos) -> Sum (MMap.map (fun c -> Z.mul c f2) monos))
ir1
| E_Binop (op, { desc = E_Literal l1; _ }, { desc = E_Literal l2; _ }) ->
binop_values e op l1 l2 |> poly_of_val |> always
| E_Unop (NEG, e0) -> e0 |> to_ir env |> map_num poly_neg
| E_Cond (cond, e1, e2) ->
let Disjunction ctnts, Disjunction nctnts = to_cond env cond
and (Disjunction ir1) = to_ir env e1
and (Disjunction ir2) = to_ir env e2 in
let restrict ctnts (ctnts', p) = (ctnts_and ctnts ctnts', p) in
let ir1' = ASTUtils.list_cross restrict ctnts ir1
and ir2' = ASTUtils.list_cross restrict nctnts ir2 in
Disjunction (ir1' @ ir2')
| _ -> (
let v =
try static_eval env e
with
| StaticEvaluationUnknown
| Error.ASLException { desc = UnsupportedExpr _; _ }
->
raise NotYetImplemented
in
match v with
| L_Int i -> poly_of_z i |> always
| _ -> raise NotYetImplemented)
and to_cond env (e : expr) : ctnts disjunction * ctnts disjunction =
let ( ||| ) = disjunction_or in
let ( &&& ) = disjunction_cross ctnts_and in
match e.desc with
| E_Literal (L_Bool b) ->
(Disjunction [ ctnts_of_bool b ], Disjunction [ ctnts_of_bool (not b) ])
| E_Binop (BAND, e1, e2) ->
let ctnts1, nctnts1 = to_cond env e1
and ctnts2, nctnts2 = to_cond env e2 in
(ctnts1 &&& ctnts2, nctnts1 ||| nctnts2)
| E_Binop (BOR, e1, e2) ->
let ctnts1, nctnts1 = to_cond env e1
and ctnts2, nctnts2 = to_cond env e2 in
(ctnts1 ||| ctnts2, nctnts1 &&& nctnts2)
| E_Binop (EQ_OP, e1, e2) ->
let e' = E_Binop (MINUS, e1, e2) |> ASTUtils.add_pos_from_st e in
let ir = to_ir env e' in
(ir_to_cond Null ir, ir_to_cond NotNull ir)
| E_Cond (cond, e1, e2) ->
let ctnts_cond, nctnts_cond = to_cond env cond
and ctnts1, nctnts1 = to_cond env e1
and ctnts2, nctnts2 = to_cond env e2 in
( ctnts_cond &&& ctnts1 ||| (nctnts_cond &&& ctnts2),
nctnts_cond ||| nctnts1 &&& (ctnts_cond ||| nctnts2) )
| _ -> raise NotYetImplemented
let loc = dummy_annotated
let zero = !$0
let one = !$1
let cannot_happen_expr = zero
let expr_of_z z =
if Z.equal z Z.one then one
else if Z.equal z Z.zero then zero
else literal (L_Int z)
let e_true = L_Bool true |> literal
let e_false = L_Bool true |> literal
let e_var s = var_ s
let e_band e1 e2 =
if e1 == e_true then e2 else if e2 == e_true then e1 else binop BAND e1 e2
let e_cond e1 e2 e3 = E_Cond (e1, e2, e3) |> add_pos_from loc
let unop op e = E_Unop (op, e) |> add_pos_from loc
let monomial_to_expr (Prod map) =
let ( ** ) e1 e2 =
if e1 == one then e2 else if e2 == one then e1 else binop MUL e1 e2
in
let ( ^^ ) e = function
| 0 -> one
| 1 -> e
| 2 -> e ** e
| p -> binop POW e (expr_of_int p)
in
AMap.fold (fun s p e -> (e_var s ^^ p) ** e) map
let sign_of_z c =
match Z.sign c with
| 1 -> StrictPositive
| 0 -> Null
| -1 -> StrictNegative
| _ -> assert false
let polynomial_to_expr (Sum map) =
let add s1 e1 s2 e2 =
match (s1, s2) with
| _, Null -> e1
| Null, _ -> e2
| StrictPositive, StrictPositive | StrictNegative, StrictNegative ->
binop PLUS e1 e2
| StrictPositive, StrictNegative | StrictNegative, StrictPositive ->
binop MINUS e1 e2
| _ -> assert false
in
let res, sign =
MMap.fold
(fun m c (e, sign) ->
let c' = Z.abs c and sign' = sign_of_z c in
let m' = monomial_to_expr m (expr_of_z c') in
(add sign' m' sign e, sign'))
map (zero, Null)
in
match sign with
| Null -> zero
| StrictPositive -> res
| StrictNegative -> unop NEG res
| _ -> assert false
let sign_to_binop = function
| Null -> EQ_OP
| NotNull -> NEQ
| StrictPositive -> LT
| Positive -> LEQ
| Negative -> GEQ
| StrictNegative -> GT
let sign_to_expr sign e = binop (sign_to_binop sign) zero e
let ctnt_to_expr (Sum p) sign =
let c = try MMap.find mono_one p with Not_found -> Z.zero
and p = Sum (MMap.remove mono_one p) in
binop (sign_to_binop sign) (expr_of_z (Z.neg c)) (polynomial_to_expr p)
let ctnts_to_expr : ctnts -> expr option = function
| Bottom -> None
| Conjunction map ->
Some
(PMap.fold
(fun p sign e -> e_band (ctnt_to_expr p sign) e)
map e_true)
let of_ir : ir_expr -> expr = function
| Disjunction [] -> zero
| Disjunction [ (Conjunction map, p) ] when PMap.is_empty map ->
polynomial_to_expr p
| Disjunction [ (_, _) ] -> assert false
| Disjunction map ->
let map = List.rev map in
List.fold_left
(fun e (ctnts, p) ->
match ctnts_to_expr ctnts with
| None -> e
| Some cond -> e_cond cond (polynomial_to_expr p) e)
cannot_happen_expr map
let reduce_mono (Prod _) factor =
if Z.equal factor Z.zero then None else Some factor
let rec int_exp x = function
| 0 -> 1
| 1 -> x
| 2 -> x * x
| 3 -> x * x * x
| n ->
let r = int_exp x (n / 2) in
let r2 = r * r in
if n mod 2 == 0 then r2 else r2 * x
type affectation = atom * Z.t * polynomial option
type affectations = affectation list
let subst_mono (affectations : affectations) (Prod m) factor =
let m, factor =
List.fold_left
(fun (m, f) (a, v, _) ->
match AMap.find_opt a m with
| None -> (m, f)
| Some power -> (AMap.remove a m, Z.mul f (Z.pow v power)))
(m, factor) affectations
in
(Prod m, factor)
let subst_poly (affectations : affectations) (Sum map as poly) =
Sum
(MMap.fold
(fun mono factor ->
let affectations =
List.filter
(function _, _, Some p -> poly_compare p poly != 0 | _ -> true)
affectations
in
let mono, factor = subst_mono affectations mono factor in
if Z.equal Z.zero factor then Fun.id
else add_mono_to_poly mono factor)
map MMap.empty)
let reduce_poly affectations : polynomial -> polynomial =
fun (Sum ms) ->
Sum (ms |> MMap.filter_map reduce_mono) |> subst_poly affectations
let poly_get_constant_opt (Sum p) =
if MMap.is_empty p then Some Z.zero
else if MMap.cardinal p = 1 then MMap.find_opt mono_one p
else None
let ctnt_is_trivial p s =
match poly_get_constant_opt p with
| Some c ->
if constant_satisfies c s then true
else raise_notrace ConjunctionBottomInterrupt
| None -> false
let reduce_ctnts affectations : ctnts -> ctnts = function
| Bottom -> Bottom
| Conjunction ctnts -> (
try
Conjunction
(PMap.fold
(fun p s ->
let p = reduce_poly affectations p in
if ctnt_is_trivial p s then Fun.id
else
PMap.update p (function
| None -> Some s
| Some s' -> sign_and p s s'))
ctnts PMap.empty)
with ConjunctionBottomInterrupt -> Bottom)
let poly_get_linear (Sum ms) =
let ms = MMap.filter (fun _ f -> not (Z.equal f Z.zero)) ms in
let n = MMap.cardinal ms in
if false && n > 2 then None
else
let exception NotLinear in
let mono_get_linear (Prod m) =
match AMap.bindings m |> List.filter (fun (_, p) -> p != 0) with
| [] -> None
| [ (x, 1) ] -> Some x
| [ (_, 0) ] -> assert false
| [ (_, _) ] -> raise NotLinear
| _ :: _ :: _ -> raise NotLinear
in
let o, c =
try
MMap.fold
(fun mono factor o ->
match (o, mono_get_linear mono) with
| (o, c), None -> (o, Z.sub c factor)
| (None, c), Some x -> (Some x, c)
| (Some x, _), Some x' ->
assert (not (String.equal x x'));
raise_notrace NotLinear)
ms (None, Z.zero)
with NotLinear -> (None, Z.zero)
in
match o with
| None ->
if not (Z.equal Z.zero c) then
raise_notrace ConjunctionBottomInterrupt
else None
| Some x -> Some (x, c)
let deduce_equations : ctnts -> ctnts * affectations = function
| Bottom -> (Bottom, [])
| Conjunction map as ctnts -> (
try
let affectations =
PMap.fold
(fun p s affectations ->
if s != Null then affectations
else
match poly_get_linear p with
| None -> affectations
| Some (s, i) -> (s, i, Some p) :: affectations)
map []
in
(reduce_ctnts affectations ctnts, affectations)
with ConjunctionBottomInterrupt -> (Bottom, []))
let ctnts_get_trivial_opt = function
| Bottom -> Some false
| Conjunction li -> (
try if PMap.for_all ctnt_is_trivial li then Some true else None
with ConjunctionBottomInterrupt -> Some false)
let reduce (Disjunction ir) =
Disjunction
( ir
|> List.filter_map (fun (ctnts, p) ->
let ctnts, affectations = deduce_equations ctnts in
match ctnts with
| Bottom -> None
| Conjunction _ as c -> Some (c, reduce_poly affectations p))
|> fun li ->
List.fold_right
(fun (ctnts, p) acc ->
match ctnts_get_trivial_opt ctnts with
| Some true -> [ (ctnts_true, p) ]
| Some false -> acc
| None -> (ctnts, p) :: acc)
li [] )
let normalize (env : env) (e : expr) : expr =
e |> to_ir env |> reduce |> of_ir
let free_variables (Disjunction li) =
let mono_free (Prod map) = AMap.fold (fun s _ -> ISet.add s) map in
let poly_free (Sum map) = MMap.fold (fun m _ -> mono_free m) map in
let ctnt_free p _s = poly_free p in
let ctnts_free = function
| Bottom -> Fun.id
| Conjunction map -> PMap.fold ctnt_free map
in
List.fold_left
(fun acc (ctnts, p) -> acc |> poly_free p |> ctnts_free ctnts)
ISet.empty li
let equal_mod_branches (Disjunction li1) (Disjunction li2) =
let to_cond (ctnts1, p1) (ctnts2, p2) =
let equality =
let p = add_polys p1 (poly_neg p2) in
Conjunction (PMap.singleton p Null)
in
let ctnts = ctnts_and ctnts1 ctnts2 in
let ctnts, affectations = deduce_equations ctnts in
let affectations =
List.map (fun (x, v, _) -> (x, v, None)) affectations
in
let () =
if false then
Format.eprintf
"@[<hv 2>Equality between@ %a@ and %a @ gave affectations %a@.@]"
pp_ctnts_and_poly (ctnts1, p1) pp_ctnts_and_poly (ctnts2, p2)
Format.(
pp_print_list ~pp_sep:pp_print_space (fun f (x, d, _) ->
fprintf f "%s/%a" x Z.pp_print d))
affectations
in
match ctnts with
| Bottom -> Bottom
| Conjunction _ ->
let equality' = reduce_ctnts affectations equality in
let () =
if false then Format.eprintf "@[Gave %a@.@]" pp_ctnts equality'
in
equality'
in
list_cross to_cond li1 li2
|> List.for_all (function
| Bottom -> false
| Conjunction m -> PMap.is_empty m)
end
let equal_in_env env e1 e2 =
let dbg = false in
let open Normalize in
let () =
if dbg then
Format.eprintf "@[<hv 2>Are %a@ and %a@ equal?@]@ " PP.pp_expr e1
PP.pp_expr e2
in
try
let ir1 = to_ir env e1 |> reduce and ir2 = to_ir env e2 |> reduce in
let () =
if dbg then
Format.eprintf "@[Reducing them to@ %a@ and %a.@]@ " Normalize.pp_ir ir1
Normalize.pp_ir ir2
in
let res = equal_mod_branches ir1 ir2 in
let () =
if dbg then if res then Format.eprintf "YES@." else Format.eprintf "NO@."
in
res
with NotYetImplemented ->
let () = if dbg then Format.eprintf "Cannot answer this question yet." in
false
let statically_free_variables env e =
let open Normalize in
try to_ir env e |> reduce |> free_variables
with NotYetImplemented -> ASTUtils.ISet.empty
let bitwidth_statically_equal_in_env env =
ASTUtils.bitwidth_equal (equal_in_env env)