package fehu

  1. Overview
  2. Docs

Source file reinforce.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
open Kaun

type config = {
  learning_rate : float;
  gamma : float;
  use_baseline : bool;
  reward_scale : float;
  entropy_coef : float;
  max_episode_steps : int;
}

let default_config =
  {
    learning_rate = 0.001;
    gamma = 0.99;
    use_baseline = false;
    reward_scale = 1.0;
    entropy_coef = 0.01;
    max_episode_steps = 1000;
  }

type t = {
  policy_network : module_;
  mutable policy_params : Rune.float32_elt params;
  baseline_network : module_ option;
  mutable baseline_params : Rune.float32_elt params option;
  policy_optimizer : Rune.float32_elt Optimizer.gradient_transformation;
  mutable policy_opt_state : Rune.float32_elt Optimizer.opt_state;
  baseline_optimizer :
    Rune.float32_elt Optimizer.gradient_transformation option;
  mutable baseline_opt_state : Rune.float32_elt Optimizer.opt_state option;
  mutable rng : Rune.Rng.key;
  n_actions : int;
  config : config;
}

type update_metrics = {
  episode_return : float;
  episode_length : int;
  avg_entropy : float;
  avg_log_prob : float;
  adv_mean : float;
  adv_std : float;
  value_loss : float option;
}

let create ~policy_network ?baseline_network ~n_actions ~rng config =
  if config.use_baseline && Option.is_none baseline_network then
    invalid_arg
      "Reinforce.create: baseline_network required when use_baseline = true";

  let keys = Rune.Rng.split ~n:2 rng in

  let policy_params = init policy_network ~rngs:keys.(0) ~dtype:Rune.float32 in
  let policy_optimizer = Optimizer.adam ~lr:config.learning_rate () in
  let policy_opt_state = policy_optimizer.init policy_params in

  let ( baseline_network_state,
        baseline_params,
        baseline_optimizer,
        baseline_opt_state ) =
    match baseline_network with
    | Some net when config.use_baseline ->
        let params = init net ~rngs:keys.(1) ~dtype:Rune.float32 in
        let opt = Optimizer.adam ~lr:config.learning_rate () in
        let opt_state = opt.init params in
        (Some net, Some params, Some opt, Some opt_state)
    | _ -> (None, None, None, None)
  in

  {
    policy_network;
    policy_params;
    baseline_network = baseline_network_state;
    baseline_params;
    policy_optimizer;
    policy_opt_state;
    baseline_optimizer;
    baseline_opt_state;
    rng = keys.(0);
    n_actions;
    config;
  }

let predict t obs ~training =
  (* Add batch dimension if needed: [features] -> [1, features] *)
  let obs_shape = Rune.shape obs in
  let obs_batched =
    if Array.length obs_shape = 1 then
      (* No batch dimension, add it *)
      let features = obs_shape.(0) in
      Rune.reshape [| 1; features |] obs
    else
      (* Already has batch dimension *)
      obs
  in

  let logits = apply t.policy_network t.policy_params ~training obs_batched in

  if training then (
    (* Sample from policy distribution using Rune RNG *)
    let probs = Rune.softmax logits ~axes:[ -1 ] in
    let probs_array = Rune.to_array probs in

    (* Split RNG and sample *)
    let keys = Rune.Rng.split t.rng ~n:2 in
    t.rng <- keys.(0);
    let sample_rng = keys.(1) in

    let uniform_sample = Rune.Rng.uniform sample_rng Rune.float32 [| 1 |] in
    let r = (Rune.to_array uniform_sample).(0) in

    let rec sample_idx i cumsum =
      if i >= Array.length probs_array - 1 then i
      else if r <= cumsum +. probs_array.(i) then i
      else sample_idx (i + 1) (cumsum +. probs_array.(i))
    in

    let action_idx = sample_idx 0 0.0 in
    let action = Rune.scalar Rune.int32 (Int32.of_int action_idx) in

    (* Compute log_softmax manually *)
    let max_logits = Rune.max logits ~axes:[ -1 ] ~keepdims:true in
    let exp_logits = Rune.exp (Rune.sub logits max_logits) in
    let sum_exp = Rune.sum exp_logits ~axes:[ -1 ] ~keepdims:true in
    let log_probs = Rune.sub logits (Rune.add max_logits (Rune.log sum_exp)) in
    let log_prob_array = Rune.to_array log_probs in
    let log_prob = log_prob_array.(action_idx) in

    (action, log_prob))
  else
    (* Greedy selection *)
    let action_idx = Rune.argmax logits ~axis:(-1) ~keepdims:false in
    let action = Rune.cast Rune.int32 action_idx in
    (action, 0.0)

let predict_value t obs =
  match (t.baseline_network, t.baseline_params) with
  | Some net, Some params ->
      (* Add batch dimension if needed *)
      let obs_shape = Rune.shape obs in
      let obs_batched =
        if Array.length obs_shape = 1 then
          let features = obs_shape.(0) in
          Rune.reshape [| 1; features |] obs
        else obs
      in
      let value = apply net params ~training:false obs_batched in
      let value_array = Rune.to_array value in
      value_array.(0)
  | _ -> 0.0

let update t trajectory =
  let open Fehu in
  (* Compute returns using Monte Carlo *)
  let compute_returns ~rewards ~dones ~gamma =
    let n = Array.length rewards in
    let returns = Array.make n 0.0 in
    let running_return = ref 0.0 in

    for i = n - 1 downto 0 do
      if dones.(i) then running_return := 0.0;
      running_return := rewards.(i) +. (gamma *. !running_return);
      returns.(i) <- !running_return
    done;

    returns
  in

  let returns_raw =
    compute_returns ~rewards:trajectory.Trajectory.rewards
      ~dones:trajectory.Trajectory.terminateds ~gamma:t.config.gamma
  in

  let returns = Array.map (fun r -> r *. t.config.reward_scale) returns_raw in

  (* Compute advantages *)
  let advantages =
    if t.config.use_baseline then
      match trajectory.Trajectory.values with
      | Some values -> Array.mapi (fun i r -> r -. values.(i)) returns
      | None -> returns
    else returns
  in

  let n_steps = Array.length advantages in
  let steps_f = float_of_int n_steps in

  (* Compute advantage statistics *)
  let adv_mean =
    if n_steps = 0 then 0.0
    else Array.fold_left ( +. ) 0.0 advantages /. steps_f
  in
  let adv_var =
    if n_steps = 0 then 0.0
    else
      Array.fold_left
        (fun acc a ->
          let diff = a -. adv_mean in
          acc +. (diff *. diff))
        0.0 advantages
      /. steps_f
  in
  let adv_std = sqrt adv_var in

  (* Normalize advantages *)
  let advantages_norm =
    if n_steps = 0 then [||]
    else
      let denom = if adv_std < 1e-6 then 1.0 else adv_std in
      Array.map (fun a -> (a -. adv_mean) /. denom) advantages
  in

  let entropy_acc = ref 0.0 in
  let log_prob_acc = ref 0.0 in

  (* Policy gradient loss *)
  let policy_loss_grad params =
    let total_loss = ref (Rune.scalar Rune.float32 0.0) in

    for i = 0 to Array.length trajectory.Trajectory.observations - 1 do
      let obs = trajectory.Trajectory.observations.(i) in
      let action = trajectory.Trajectory.actions.(i) in
      let advantage = advantages_norm.(i) in

      (* Add batch dimension if needed: [features] -> [1, features] *)
      let obs_shape = Rune.shape obs in
      let obs_batched =
        if Array.length obs_shape = 1 then
          let features = obs_shape.(0) in
          Rune.reshape [| 1; features |] obs
        else obs
      in

      let logits = apply t.policy_network params ~training:true obs_batched in

      (* Compute log_softmax *)
      let max_logits = Rune.max logits ~axes:[ -1 ] ~keepdims:true in
      let exp_logits = Rune.exp (Rune.sub logits max_logits) in
      let sum_exp = Rune.sum exp_logits ~axes:[ -1 ] ~keepdims:true in
      let log_probs_pred =
        Rune.sub logits (Rune.add max_logits (Rune.log sum_exp))
      in

      (* Compute entropy for logging *)
      let probs = Rune.softmax logits ~axes:[ -1 ] in
      let probs_arr = Rune.to_array (Rune.reshape [| t.n_actions |] probs) in
      let entropy =
        Array.fold_left
          (fun acc p -> if p > 0. then acc -. (p *. log p) else acc)
          0.0 probs_arr
      in
      entropy_acc := !entropy_acc +. entropy;

      (* Select log_prob for taken action *)
      let log_probs_flat = Rune.reshape [| t.n_actions |] log_probs_pred in
      let indices = Rune.reshape [| 1 |] (Rune.cast Rune.int32 action) in
      let selected = Rune.take indices log_probs_flat |> Rune.reshape [||] in

      let log_prob_float = (Rune.to_array selected).(0) in
      log_prob_acc := !log_prob_acc +. log_prob_float;

      (* Policy gradient: -log π(a|s) × advantage *)
      let loss = Rune.mul_s (Rune.neg selected) advantage in
      total_loss := Rune.add !total_loss loss;

      (* Entropy regularization *)
      if t.config.entropy_coef <> 0. then
        let entropy_scalar =
          Rune.sum (Rune.mul probs log_probs_pred) ~axes:[ -1 ] ~keepdims:false
          |> Rune.reshape [||]
        in
        let entropy_term =
          Rune.mul_s entropy_scalar (-.t.config.entropy_coef)
        in
        total_loss := Rune.add !total_loss entropy_term
    done;

    let avg_loss =
      Rune.div_s !total_loss
        (float_of_int (Array.length trajectory.Trajectory.observations))
    in
    avg_loss
  in

  (* Update policy *)
  let _policy_loss, policy_grads =
    value_and_grad policy_loss_grad t.policy_params
  in

  let policy_updates, new_policy_opt_state =
    t.policy_optimizer.update t.policy_opt_state t.policy_params policy_grads
  in

  t.policy_params <- Optimizer.apply_updates t.policy_params policy_updates;
  t.policy_opt_state <- new_policy_opt_state;

  (* Update baseline if present *)
  let value_loss_acc = ref 0.0 in

  (if t.config.use_baseline then
     match
       ( t.baseline_network,
         t.baseline_params,
         t.baseline_optimizer,
         t.baseline_opt_state )
     with
     | Some net, Some params, Some opt, Some opt_state ->
         let baseline_loss_grad params =
           let total_loss = ref (Rune.scalar Rune.float32 0.0) in

           for i = 0 to Array.length trajectory.Trajectory.observations - 1 do
             let obs = trajectory.Trajectory.observations.(i) in
             let return = returns.(i) in

             (* Add batch dimension if needed: [features] -> [1, features] *)
             let obs_shape = Rune.shape obs in
             let obs_batched =
               if Array.length obs_shape = 1 then
                 let features = obs_shape.(0) in
                 Rune.reshape [| 1; features |] obs
               else obs
             in

             let value_pred = apply net params ~training:true obs_batched in
             let value = Rune.reshape [||] value_pred in
             let value_float = (Rune.to_array value).(0) in
             let diff = value_float -. return in
             value_loss_acc := !value_loss_acc +. (diff *. diff);
             let target = Rune.scalar Rune.float32 return in
             let loss = Rune.square (Rune.sub value target) in

             total_loss := Rune.add !total_loss loss
           done;

           let avg_loss =
             Rune.div_s !total_loss
               (float_of_int (Array.length trajectory.Trajectory.observations))
           in
           avg_loss
         in

         let _, baseline_grads = value_and_grad baseline_loss_grad params in
         let baseline_updates, new_baseline_opt_state =
           opt.update opt_state params baseline_grads
         in

         t.baseline_params <-
           Some (Optimizer.apply_updates params baseline_updates);
         t.baseline_opt_state <- Some new_baseline_opt_state
     | _ -> ());

  (* Compute metrics *)
  let episode_return = if n_steps > 0 then returns_raw.(0) else 0.0 in
  let avg_entropy = if n_steps = 0 then 0.0 else !entropy_acc /. steps_f in
  let avg_log_prob = if n_steps = 0 then 0.0 else !log_prob_acc /. steps_f in
  let value_loss_avg =
    if n_steps = 0 then None
    else if t.config.use_baseline then Some (!value_loss_acc /. steps_f)
    else None
  in

  let metrics =
    {
      episode_return;
      episode_length = n_steps;
      avg_entropy;
      avg_log_prob;
      adv_mean;
      adv_std;
      value_loss = value_loss_avg;
    }
  in

  (t, metrics)

let learn t ~env ~total_timesteps
    ?(callback = fun ~iteration:_ ~metrics:_ -> true) () =
  let open Fehu in
  let timesteps = ref 0 in
  let iteration = ref 0 in

  while !timesteps < total_timesteps do
    (* Collect episode *)
    let observations = ref [] in
    let actions = ref [] in
    let rewards = ref [] in
    let terminateds = ref [] in
    let truncateds = ref [] in
    let log_probs = ref [] in
    let values = ref [] in

    let obs, _info = Env.reset env () in
    let current_obs = ref obs in
    let steps = ref 0 in
    let done_flag = ref false in

    while !steps < t.config.max_episode_steps && not !done_flag do
      let action, log_prob = predict t !current_obs ~training:true in
      let value =
        if t.config.use_baseline then predict_value t !current_obs else 0.0
      in

      observations := !current_obs :: !observations;
      actions := action :: !actions;
      log_probs := log_prob :: !log_probs;
      values := value :: !values;

      let transition = Env.step env action in

      rewards := transition.Env.reward :: !rewards;
      terminateds := transition.Env.terminated :: !terminateds;
      truncateds := transition.Env.truncated :: !truncateds;

      current_obs := transition.Env.observation;
      steps := !steps + 1;
      done_flag := transition.Env.terminated || transition.Env.truncated
    done;

    timesteps := !timesteps + !steps;

    (* Create trajectory *)
    let log_probs_array = Array.of_list (List.rev !log_probs) in
    let values_array = Array.of_list (List.rev !values) in
    let trajectory =
      Trajectory.create
        ~observations:(Array.of_list (List.rev !observations))
        ~actions:(Array.of_list (List.rev !actions))
        ~rewards:(Array.of_list (List.rev !rewards))
        ~terminateds:(Array.of_list (List.rev !terminateds))
        ~truncateds:(Array.of_list (List.rev !truncateds))
        ~log_probs:log_probs_array
        ?values:(if t.config.use_baseline then Some values_array else None)
        ()
    in

    (* Update *)
    let _t, metrics = update t trajectory in

    iteration := !iteration + 1;

    (* Call callback *)
    let continue = callback ~iteration:!iteration ~metrics in
    if not continue then timesteps := total_timesteps
  done;

  t

let save _t _path =
  (* TODO: Implement serialization *)
  failwith "Reinforce.save: not yet implemented"

let load _path =
  (* TODO: Implement deserialization *)
  failwith "Reinforce.load: not yet implemented"