package fehu

  1. Overview
  2. Docs

Source file reinforce.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
open Kaun
open Fehu
module Snapshot = Checkpoint.Snapshot

type config = {
  learning_rate : float;
  gamma : float;
  use_baseline : bool;
  reward_scale : float;
  entropy_coef : float;
  max_episode_steps : int;
}

let default_config =
  {
    learning_rate = 0.001;
    gamma = 0.99;
    use_baseline = false;
    reward_scale = 1.0;
    entropy_coef = 0.01;
    max_episode_steps = 1000;
  }

type params = Ptree.t

type metrics = {
  episode_return : float;
  episode_length : int;
  episode_won : bool;
  stage_desc : string;
  avg_entropy : float;
  avg_log_prob : float;
  adv_mean : float;
  adv_std : float;
  value_loss : float option;
  total_steps : int;
  total_episodes : int;
}

type episode_step = {
  observation : (float, Bigarray.float32_elt) Rune.t;
  next_observation : (float, Bigarray.float32_elt) Rune.t;
  info : Info.t;
  action_index : int;
  reward : float;
  terminated : bool;
  truncated : bool;
}

type state = {
  policy_network : module_;
  baseline_network : module_ option;
  policy_optimizer : Optimizer.algorithm;
  baseline_optimizer : Optimizer.algorithm option;
  policy_opt_state : Optimizer.state;
  baseline_opt_state : Optimizer.state option;
  baseline_params : params option;
  rng : Rune.Rng.key;
  config : config;
  total_steps : int;
  total_episodes : int;
  current_obs : (float, Bigarray.float32_elt) Rune.t;
  current_info : Info.t;
  episode_steps_rev : episode_step list;
  episode_return_acc : float;
  episode_length_acc : int;
  action_offset : int;
  n_actions : int;
  last_metrics : metrics;
}

let make_optimizer config =
  let schedule = Optimizer.Schedule.constant config.learning_rate in
  Optimizer.adam ~lr:schedule ()

let discrete_action_info action_space =
  match Space.boundary_values action_space with
  | [ Space.Value.Int start; Int finish ] -> (start, finish - start + 1)
  | [ Space.Value.Int start ] -> (start, 1)
  | _ ->
      invalid_arg
        "Reinforce.init: action space must provide discrete boundary values"

let reshape_observation obs =
  match Rune.shape obs with
  | [||] -> Rune.reshape [| 1 |] obs
  | [| features |] -> Rune.reshape [| 1; features |] obs
  | [| 1; _ |] -> obs
  | [| batch; _ |] when batch = 1 -> obs
  | _ -> obs

let invalid_logit_offset = -1e9

let mask_offsets_of_info ~n_actions info =
  match Info.find "action_mask" info with
  | Some (Info.Bool_array arr) ->
      let len = Array.length arr in
      let offsets =
        Array.init n_actions (fun idx ->
            if idx < len && arr.(idx) then 0.0 else invalid_logit_offset)
      in
      Some offsets
  | _ -> None

let batch_mask_tensor_of_infos ~n_actions infos =
  let rows = Array.length infos in
  if rows = 0 then None
  else
    let has_mask = ref false in
    let data = Array.make (rows * n_actions) 0.0 in
    for row = 0 to rows - 1 do
      match mask_offsets_of_info ~n_actions infos.(row) with
      | Some offsets ->
          has_mask := true;
          Array.blit offsets 0 data (row * n_actions) n_actions
      | None -> ()
    done;
    if !has_mask then Some (Rune.create Rune.float32 [| rows; n_actions |] data)
    else None

let add_mask_to_logits logits = function
  | Some mask -> Rune.add logits mask
  | None -> logits

let compute_returns ~gamma ~rewards ~terminateds ~truncateds =
  let n = Array.length rewards in
  let returns = Array.make n 0.0 in
  let running = ref 0.0 in
  for idx = n - 1 downto 0 do
    if terminateds.(idx) || truncateds.(idx) then running := 0.0;
    running := rewards.(idx) +. (gamma *. !running);
    returns.(idx) <- !running
  done;
  returns

let float_array_mean arr =
  let n = Array.length arr in
  if n = 0 then 0.0 else Array.fold_left ( +. ) 0.0 arr /. float_of_int n

let float_array_std arr ~mean =
  let n = Array.length arr in
  if n = 0 then 0.0
  else
    let variance =
      Array.fold_left
        (fun acc value ->
          let diff = value -. mean in
          acc +. (diff *. diff /. float_of_int n))
        0.0 arr
    in
    sqrt variance

let initial_metrics =
  {
    episode_return = 0.0;
    episode_length = 0;
    episode_won = false;
    stage_desc = "unknown-stage";
    avg_entropy = 0.0;
    avg_log_prob = 0.0;
    adv_mean = 0.0;
    adv_std = 0.0;
    value_loss = None;
    total_steps = 0;
    total_episodes = 0;
  }

let metrics state = state.last_metrics

let log_softmax logits =
  let max_logits = Rune.max logits ~axes:[ -1 ] ~keepdims:true in
  let shifted = Rune.sub logits max_logits in
  let sum_exp = Rune.sum (Rune.exp shifted) ~axes:[ -1 ] ~keepdims:true in
  Rune.sub shifted (Rune.log sum_exp)

let policy_statistics ?mask ~n_actions ~action_indices ~obs_batch ~network
    ~params () =
  let logits = apply network params ~training:false obs_batch in
  let logits = add_mask_to_logits logits mask in
  let log_probs = log_softmax logits in
  let gather_axis = Array.length (Rune.shape log_probs) - 1 in
  let one_hot =
    Rune.cast Rune.float32 (Rune.one_hot ~num_classes:n_actions action_indices)
  in
  let selected =
    Rune.mul log_probs one_hot |> Rune.sum ~axes:[ gather_axis ] ~keepdims:false
  in
  let probs = Rune.exp log_probs in
  let entropy =
    Rune.mul probs log_probs |> Rune.neg
    |> Rune.sum ~axes:[ gather_axis ] ~keepdims:false
  in
  let log_prob_array = Rune.to_array selected in
  let entropy_array = Rune.to_array entropy in
  let avg_log_prob = float_array_mean log_prob_array in
  let avg_entropy = float_array_mean entropy_array in
  (avg_log_prob, avg_entropy)

type episode_update = {
  params : params;
  policy_opt_state : Optimizer.state;
  baseline_params : params option;
  baseline_opt_state : Optimizer.state option;
  episode_return : float;
  episode_length : int;
  episode_won : bool;
  stage_desc : string;
  avg_entropy : float;
  avg_log_prob : float;
  adv_mean : float;
  adv_std : float;
  value_loss : float option;
}

let perform_episode_update ~params ~(algo_state : state) steps =
  let steps = List.rev steps in
  let n_steps = List.length steps in
  if n_steps = 0 then
    {
      params;
      policy_opt_state = algo_state.policy_opt_state;
      baseline_params = algo_state.baseline_params;
      baseline_opt_state = algo_state.baseline_opt_state;
      episode_return = 0.0;
      episode_length = 0;
      episode_won = false;
      stage_desc = algo_state.last_metrics.stage_desc;
      avg_entropy = 0.0;
      avg_log_prob = 0.0;
      adv_mean = 0.0;
      adv_std = 0.0;
      value_loss = None;
    }
  else
    let observations =
      Array.of_list (List.map (fun step -> step.observation) steps)
    in
    let obs_batch =
      Rune.stack ~axis:0 (Array.to_list observations) |> Rune.cast Rune.float32
    in
    let raw_rewards =
      Array.of_list (List.map (fun step -> step.reward) steps)
    in
    let rewards =
      Array.map
        (fun reward -> reward *. algo_state.config.reward_scale)
        raw_rewards
    in
    let terminateds =
      Array.of_list (List.map (fun step -> step.terminated) steps)
    in
    let truncateds =
      Array.of_list (List.map (fun step -> step.truncated) steps)
    in
    let dones =
      Array.init n_steps (fun idx -> terminateds.(idx) || truncateds.(idx))
    in
    let infos = Array.of_list (List.map (fun step -> step.info) steps) in
    let action_indices_array =
      Array.of_list (List.map (fun step -> step.action_index) steps)
    in
    let action_indices =
      Array.map (fun idx -> Int32.of_int idx) action_indices_array
      |> Rune.create Rune.int32 [| n_steps |]
    in
    let mask_tensor =
      batch_mask_tensor_of_infos ~n_actions:algo_state.n_actions infos
    in
    let baseline_values =
      if algo_state.config.use_baseline then
        match (algo_state.baseline_network, algo_state.baseline_params) with
        | Some net, Some params ->
            apply net params ~training:false obs_batch
            |> Rune.reshape [| n_steps |] |> Rune.to_array
        | _ ->
            invalid_arg
              "Reinforce.step: baseline parameters missing despite \
               use_baseline=true"
      else Array.make n_steps 0.0
    in
    let last_step =
      match List.rev steps with last :: _ -> last | [] -> assert false
    in
    let last_done = last_step.terminated || last_step.truncated in
    let last_value =
      if algo_state.config.use_baseline && not last_done then
        match (algo_state.baseline_network, algo_state.baseline_params) with
        | Some net, Some params ->
            let next_obs =
              reshape_observation last_step.next_observation
              |> Rune.cast Rune.float32
            in
            let value =
              apply net params ~training:false next_obs
              |> Rune.reshape [| 1 |] |> Rune.to_array
            in
            value.(0)
        | _ ->
            invalid_arg
              "Reinforce.step: baseline parameters missing despite \
               use_baseline=true"
      else 0.0
    in
    let stage_desc =
      match Info.find "stage" last_step.info with
      | Some (Info.String s) -> s
      | _ -> "unknown-stage"
    in
    let episode_won = last_step.terminated in
    let advantages_raw, returns_raw =
      if algo_state.config.use_baseline then
        Training.compute_gae ~rewards ~values:baseline_values ~dones ~last_value
          ~last_done ~gamma:algo_state.config.gamma ~gae_lambda:0.95
      else
        let returns =
          compute_returns ~gamma:algo_state.config.gamma ~rewards ~terminateds
            ~truncateds
        in
        (Array.copy returns, returns)
    in
    let adv_mean = float_array_mean advantages_raw in
    let adv_std = float_array_std advantages_raw ~mean:adv_mean in
    let denom = if adv_std < 1e-6 then 1.0 else adv_std in
    let advantages_norm =
      Array.map (fun a -> (a -. adv_mean) /. denom) advantages_raw
    in
    let advantages_tensor =
      Rune.create Rune.float32 [| n_steps |] advantages_norm
    in
    let policy_loss_fn current_params =
      let logits =
        apply algo_state.policy_network current_params ~training:true obs_batch
      in
      let logits = add_mask_to_logits logits mask_tensor in
      let log_probs = log_softmax logits in
      let gather_axis = Array.length (Rune.shape log_probs) - 1 in
      let one_hot =
        Rune.cast Rune.float32
          (Rune.one_hot ~num_classes:algo_state.n_actions action_indices)
      in
      let selected =
        Rune.mul log_probs one_hot
        |> Rune.sum ~axes:[ gather_axis ] ~keepdims:false
      in
      let entropy =
        let probs = Rune.exp log_probs in
        Rune.mul probs log_probs |> Rune.neg
        |> Rune.sum ~axes:[ gather_axis ] ~keepdims:false
      in
      let policy_term =
        Rune.mul advantages_tensor selected |> Rune.neg |> Rune.mean
      in
      let entropy_term =
        let entropy_mean = Rune.mean entropy in
        Rune.mul
          (Rune.scalar Rune.float32 algo_state.config.entropy_coef)
          entropy_mean
      in
      Rune.sub policy_term entropy_term
    in
    let _loss, policy_grads = value_and_grad policy_loss_fn params in
    let updates, policy_opt_state =
      Optimizer.step algo_state.policy_optimizer algo_state.policy_opt_state
        params policy_grads
    in
    let params = Optimizer.apply_updates params updates in
    let avg_log_prob, avg_entropy =
      policy_statistics ?mask:mask_tensor ~n_actions:algo_state.n_actions
        ~action_indices ~obs_batch ~network:algo_state.policy_network ~params ()
    in
    let baseline_params, baseline_opt_state, value_loss =
      if algo_state.config.use_baseline then
        match
          ( algo_state.baseline_network,
            algo_state.baseline_params,
            algo_state.baseline_optimizer,
            algo_state.baseline_opt_state )
        with
        | Some net, Some base_params, Some optimizer, Some opt_state ->
            let returns_tensor =
              Rune.create Rune.float32 [| n_steps |] returns_raw
            in
            let baseline_loss params =
              let values =
                apply net params ~training:true obs_batch
                |> Rune.reshape [| n_steps |]
              in
              let diff = Rune.sub values returns_tensor in
              Rune.mean (Rune.square diff)
            in
            let loss_tensor, grads = value_and_grad baseline_loss base_params in
            let updates, opt_state =
              Optimizer.step optimizer opt_state base_params grads
            in
            let base_params = Optimizer.apply_updates base_params updates in
            let loss = (Rune.to_array loss_tensor).(0) in
            (Some base_params, Some opt_state, Some loss)
        | _ ->
            invalid_arg
              "Reinforce.step: baseline optimizer state missing despite \
               use_baseline=true"
      else (algo_state.baseline_params, algo_state.baseline_opt_state, None)
    in
    let episode_return = Array.fold_left ( +. ) 0.0 raw_rewards in
    {
      params;
      policy_opt_state;
      baseline_params;
      baseline_opt_state;
      episode_return;
      episode_length = n_steps;
      episode_won;
      stage_desc;
      avg_entropy;
      avg_log_prob;
      adv_mean;
      adv_std;
      value_loss;
    }

let init ?baseline_network ~env ~policy_network ~rng ~config () =
  if config.use_baseline && Option.is_none baseline_network then
    invalid_arg
      "Reinforce.init: baseline_network required when use_baseline = true";
  let action_space = Env.action_space env in
  let action_offset, n_actions = discrete_action_info action_space in
  let key_count = if config.use_baseline then 3 else 2 in
  let keys = Rune.Rng.split ~n:key_count rng in
  let policy_key = keys.(0) in
  let rng_key = keys.(key_count - 1) in
  let baseline_key = if config.use_baseline then Some keys.(1) else None in
  let params = init policy_network ~rngs:policy_key ~dtype:Rune.float32 in
  let policy_optimizer = make_optimizer config in
  let policy_opt_state = Optimizer.init policy_optimizer params in
  let baseline_network, baseline_params, baseline_optimizer, baseline_opt_state
      =
    match (config.use_baseline, baseline_network, baseline_key) with
    | true, Some net, Some key ->
        let params = init net ~rngs:key ~dtype:Rune.float32 in
        let optimizer = make_optimizer config in
        let opt_state = Optimizer.init optimizer params in
        (Some net, Some params, Some optimizer, Some opt_state)
    | _ -> (None, None, None, None)
  in
  let current_obs, current_info = Env.reset env () in
  let state =
    {
      policy_network;
      baseline_network;
      policy_optimizer;
      baseline_optimizer;
      policy_opt_state;
      baseline_opt_state;
      baseline_params;
      rng = rng_key;
      config;
      total_steps = 0;
      total_episodes = 0;
      current_obs;
      current_info;
      episode_steps_rev = [];
      episode_return_acc = 0.0;
      episode_length_acc = 0;
      action_offset;
      n_actions;
      last_metrics = initial_metrics;
    }
  in
  (params, state)

let step ~env ~params ~state =
  let keys = Rune.Rng.split state.rng ~n:2 in
  let sample_key = keys.(0) in
  let rng_after = keys.(1) in
  let obs = state.current_obs in
  let obs_batched = reshape_observation obs |> Rune.cast Rune.float32 in
  let mask_tensor =
    match
      mask_offsets_of_info ~n_actions:state.n_actions state.current_info
    with
    | Some offsets ->
        Some (Rune.create Rune.float32 [| 1; state.n_actions |] offsets)
    | None -> None
  in
  let logits = apply state.policy_network params ~training:true obs_batched in
  let logits = add_mask_to_logits logits mask_tensor in
  let indices =
    Rune.Rng.categorical sample_key logits |> Rune.reshape [| 1 |]
  in
  let idx_array = Rune.to_array indices in
  let action_index = Int32.to_int idx_array.(0) in
  if action_index < 0 || action_index >= state.n_actions then
    invalid_arg "Reinforce.step produced invalid action index";
  let action_value = state.action_offset + action_index in
  let action = Rune.scalar Rune.int32 (Int32.of_int action_value) in
  let transition = Env.step env action in
  let length_after = state.episode_length_acc + 1 in
  let limit_reached = length_after >= state.config.max_episode_steps in
  let truncated =
    transition.truncated || (limit_reached && not transition.terminated)
  in
  let episode_done = transition.terminated || truncated in
  let episode_step =
    {
      observation = state.current_obs;
      next_observation = transition.observation;
      info = state.current_info;
      action_index;
      reward = transition.reward;
      terminated = transition.terminated;
      truncated;
    }
  in
  let episode_steps_rev = episode_step :: state.episode_steps_rev in
  let episode_return_acc = state.episode_return_acc +. transition.reward in
  let episode_length_acc = length_after in
  let total_steps = state.total_steps + 1 in
  let total_episodes =
    if episode_done then state.total_episodes + 1 else state.total_episodes
  in
  let params, policy_opt_state, baseline_params, baseline_opt_state, metrics =
    if episode_done then
      let update =
        perform_episode_update ~params ~algo_state:state episode_steps_rev
      in
      let metrics =
        {
          episode_return = update.episode_return;
          episode_length = update.episode_length;
          episode_won = update.episode_won;
          stage_desc = update.stage_desc;
          avg_entropy = update.avg_entropy;
          avg_log_prob = update.avg_log_prob;
          adv_mean = update.adv_mean;
          adv_std = update.adv_std;
          value_loss = update.value_loss;
          total_steps;
          total_episodes;
        }
      in
      ( update.params,
        update.policy_opt_state,
        update.baseline_params,
        update.baseline_opt_state,
        metrics )
    else
      ( params,
        state.policy_opt_state,
        state.baseline_params,
        state.baseline_opt_state,
        state.last_metrics )
  in
  let next_obs, next_info =
    if episode_done then Env.reset env ()
    else (transition.observation, transition.info)
  in
  let episode_steps_rev = if episode_done then [] else episode_steps_rev in
  let episode_return_acc = if episode_done then 0.0 else episode_return_acc in
  let episode_length_acc = if episode_done then 0 else episode_length_acc in
  ( params,
    {
      state with
      rng = rng_after;
      current_obs = next_obs;
      current_info = next_info;
      episode_steps_rev;
      episode_return_acc;
      episode_length_acc;
      total_steps;
      total_episodes;
      policy_opt_state;
      baseline_opt_state;
      baseline_params;
      last_metrics = metrics;
    } )

let train ?baseline_network ~env ~policy_network ~rng ~config ~total_timesteps
    ?callback () =
  let params, state =
    init ?baseline_network ~env ~policy_network ~rng ~config ()
  in
  let rec loop params state =
    if state.total_steps >= total_timesteps then (params, state)
    else
      let params, state = step ~env ~params ~state in
      let continue =
        match callback with None -> `Continue | Some f -> f (metrics state)
      in
      match continue with
      | `Stop -> (params, state)
      | `Continue -> loop params state
  in
  loop params state

let reinforce_schema_key = "schema"
let reinforce_schema_value = "fehu.reinforce/2"

let config_to_snapshot (c : config) =
  Snapshot.record
    [
      ("learning_rate", Snapshot.float c.learning_rate);
      ("gamma", Snapshot.float c.gamma);
      ("use_baseline", Snapshot.bool c.use_baseline);
      ("reward_scale", Snapshot.float c.reward_scale);
      ("entropy_coef", Snapshot.float c.entropy_coef);
      ("max_episode_steps", Snapshot.int c.max_episode_steps);
    ]

let config_of_snapshot snapshot =
  let open Result in
  let ( let* ) = bind in
  let open Snapshot in
  let error field message =
    Error (Printf.sprintf "Reinforce config field %s %s" field message)
  in
  match snapshot with
  | Record record ->
      let find_float field =
        match Snapshot.Record.find_opt field record with
        | Some (Scalar (Float value)) -> Ok value
        | Some (Scalar (Int value)) -> Ok (float_of_int value)
        | Some _ -> error field "must be float"
        | None -> error field "missing"
      in
      let find_int field =
        match Snapshot.Record.find_opt field record with
        | Some (Scalar (Int value)) -> Ok value
        | Some (Scalar (Float value)) -> Ok (int_of_float value)
        | Some _ -> error field "must be int"
        | None -> error field "missing"
      in
      let find_bool field =
        match Snapshot.Record.find_opt field record with
        | Some (Scalar (Bool value)) -> Ok value
        | Some _ -> error field "must be bool"
        | None -> error field "missing"
      in
      let* learning_rate = find_float "learning_rate" in
      let* gamma = find_float "gamma" in
      let* use_baseline = find_bool "use_baseline" in
      let* reward_scale = find_float "reward_scale" in
      let* entropy_coef = find_float "entropy_coef" in
      let* max_episode_steps = find_int "max_episode_steps" in
      Ok
        {
          learning_rate;
          gamma;
          use_baseline;
          reward_scale;
          entropy_coef;
          max_episode_steps;
        }
  | _ -> Error "Reinforce config must be a record"

let metrics_to_snapshot (m : metrics) =
  Snapshot.record
    [
      ("episode_return", Snapshot.float m.episode_return);
      ("episode_length", Snapshot.int m.episode_length);
      ("episode_won", Snapshot.bool m.episode_won);
      ("stage_desc", Snapshot.string m.stage_desc);
      ("avg_entropy", Snapshot.float m.avg_entropy);
      ("avg_log_prob", Snapshot.float m.avg_log_prob);
      ("adv_mean", Snapshot.float m.adv_mean);
      ("adv_std", Snapshot.float m.adv_std);
      ( "value_loss",
        match m.value_loss with
        | Some loss -> Snapshot.list [ Snapshot.float loss ]
        | None -> Snapshot.list [] );
      ("total_steps", Snapshot.int m.total_steps);
      ("total_episodes", Snapshot.int m.total_episodes);
    ]

let metrics_of_snapshot snapshot =
  let open Result in
  let ( let* ) = bind in
  let open Snapshot in
  match snapshot with
  | Record record ->
      let find_float field =
        match Snapshot.Record.find_opt field record with
        | Some (Scalar (Float value)) -> Ok value
        | Some (Scalar (Int value)) -> Ok (float_of_int value)
        | Some _ ->
            Error (Printf.sprintf "Reinforce metrics %s must be float" field)
        | None -> Error (Printf.sprintf "Reinforce metrics missing %s" field)
      in
      let find_int field =
        match Snapshot.Record.find_opt field record with
        | Some (Scalar (Int value)) -> Ok value
        | Some (Scalar (Float value)) -> Ok (int_of_float value)
        | Some _ ->
            Error (Printf.sprintf "Reinforce metrics %s must be int" field)
        | None -> Error (Printf.sprintf "Reinforce metrics missing %s" field)
      in
      let* episode_return = find_float "episode_return" in
      let* episode_length = find_int "episode_length" in
      let episode_won =
        match Snapshot.Record.find_opt "episode_won" record with
        | Some (Scalar (Bool value)) -> value
        | Some _ -> false
        | None -> false
      in
      let stage_desc =
        match Snapshot.Record.find_opt "stage_desc" record with
        | Some (Scalar (String value)) -> value
        | Some _ -> "unknown-stage"
        | None -> "unknown-stage"
      in
      let* avg_entropy = find_float "avg_entropy" in
      let* avg_log_prob = find_float "avg_log_prob" in
      let* adv_mean = find_float "adv_mean" in
      let* adv_std = find_float "adv_std" in
      let value_loss =
        match Snapshot.Record.find_opt "value_loss" record with
        | Some (List [ Scalar (Float value) ]) -> Some value
        | Some (List [ Scalar (Int value) ]) -> Some (float_of_int value)
        | _ -> None
      in
      let* total_steps = find_int "total_steps" in
      let* total_episodes = find_int "total_episodes" in
      Ok
        {
          episode_return;
          episode_length;
          episode_won;
          stage_desc;
          avg_entropy;
          avg_log_prob;
          adv_mean;
          adv_std;
          value_loss;
          total_steps;
          total_episodes;
        }
  | _ -> Error "Reinforce metrics must be a record"

let save ~path ~params ~(state : state) =
  let baseline_entries =
    match (state.baseline_params, state.baseline_opt_state) with
    | Some params, Some opt_state ->
        [
          ("baseline_params", Snapshot.ptree params);
          ("baseline_optimizer_state", Optimizer.serialize opt_state);
        ]
    | _ -> []
  in
  let snapshot =
    Snapshot.record
      ([
         (reinforce_schema_key, Snapshot.string reinforce_schema_value);
         ("config", config_to_snapshot state.config);
         ("rng", Snapshot.rng state.rng);
         ("policy_params", Snapshot.ptree params);
         ("policy_optimizer_state", Optimizer.serialize state.policy_opt_state);
         ("n_actions", Snapshot.int state.n_actions);
         ("action_offset", Snapshot.int state.action_offset);
         ("total_steps", Snapshot.int state.total_steps);
         ("total_episodes", Snapshot.int state.total_episodes);
         ("last_metrics", metrics_to_snapshot state.last_metrics);
       ]
      @ baseline_entries)
  in
  match
    Checkpoint.write_snapshot_file_with ~path ~encode:(fun () -> snapshot)
  with
  | Ok () -> ()
  | Error err ->
      failwith
        (Printf.sprintf "Reinforce.save: %s" (Checkpoint.error_to_string err))

let load ~path ~env ~policy_network ?baseline_network ~config () =
  let open Result in
  let action_space = Env.action_space env in
  let action_offset_env, n_actions_env = discrete_action_info action_space in
  let decode snapshot =
    let open Snapshot in
    let ( let* ) = bind in
    match snapshot with
    | Record record ->
        let validate_schema () =
          match Snapshot.Record.find_opt reinforce_schema_key record with
          | Some (Scalar (String value))
            when String.equal value reinforce_schema_value ->
              Ok ()
          | Some (Scalar (String value)) ->
              Error ("REINFORCE: unsupported snapshot schema " ^ value)
          | Some _ -> Error "REINFORCE: invalid schema field"
          | None -> Ok ()
        in
        let* () = validate_schema () in
        let* stored_config =
          match Snapshot.Record.find_opt "config" record with
          | Some cfg -> config_of_snapshot cfg
          | None -> Error "REINFORCE: missing config field"
        in
        if stored_config <> config then
          Error "REINFORCE: config mismatch between snapshot and request"
        else
          let require field =
            match Snapshot.Record.find_opt field record with
            | Some value -> Ok value
            | None -> Error ("REINFORCE: missing field " ^ field)
          in
          let decode_int = function
            | Scalar (Int value) -> Ok value
            | Scalar (Float value) -> Ok (int_of_float value)
            | _ -> Error "REINFORCE: expected integer field"
          in
          let decode_rng = function
            | Scalar (Int seed) -> Ok (Rune.Rng.key seed)
            | Scalar (Float seed) -> Ok (Rune.Rng.key (int_of_float seed))
            | _ -> Error "REINFORCE: rng field must be scalar"
          in
          let* rng_node = require "rng" in
          let* rng = decode_rng rng_node in
          let* policy_params_node = require "policy_params" in
          let* params =
            match Snapshot.to_ptree policy_params_node with
            | Ok tree -> Ok tree
            | Error msg -> Error ("REINFORCE: " ^ msg)
          in
          let policy_optimizer = make_optimizer config in
          let* policy_opt_state_node = require "policy_optimizer_state" in
          let* policy_opt_state =
            match Optimizer.restore policy_optimizer policy_opt_state_node with
            | Ok state -> Ok state
            | Error msg -> Error ("REINFORCE: " ^ msg)
          in
          let baseline_entries =
            match
              ( Snapshot.Record.find_opt "baseline_params" record,
                Snapshot.Record.find_opt "baseline_optimizer_state" record )
            with
            | Some params_node, Some opt_state_node ->
                let* baseline_module =
                  match baseline_network with
                  | Some net -> Ok (Some net)
                  | None ->
                      Error
                        "REINFORCE: baseline snapshot found but no baseline \
                         network provided"
                in
                let* baseline_params =
                  match Snapshot.to_ptree params_node with
                  | Ok tree -> Ok tree
                  | Error msg -> Error ("REINFORCE: " ^ msg)
                in
                let optimizer = make_optimizer config in
                let* baseline_opt_state =
                  match Optimizer.restore optimizer opt_state_node with
                  | Ok state -> Ok state
                  | Error msg -> Error ("REINFORCE: " ^ msg)
                in
                Ok
                  ( baseline_module,
                    Some baseline_params,
                    Some optimizer,
                    Some baseline_opt_state )
            | _ ->
                if config.use_baseline then
                  Error "REINFORCE: snapshot missing baseline parameters/state"
                else Ok (baseline_network, None, None, None)
          in
          let* ( baseline_network,
                 baseline_params,
                 baseline_optimizer,
                 baseline_opt_state ) =
            baseline_entries
          in
          if config.use_baseline && Option.is_none baseline_network then
            Error
              "REINFORCE: snapshot requires baseline network but none provided"
          else
            let* n_actions_node = require "n_actions" in
            let* n_actions = decode_int n_actions_node in
            let* action_offset_node = require "action_offset" in
            let* action_offset = decode_int action_offset_node in
            if n_actions <> n_actions_env || action_offset <> action_offset_env
            then
              Error "REINFORCE: environment action space mismatch for snapshot"
            else
              let* total_steps_node = require "total_steps" in
              let* total_steps = decode_int total_steps_node in
              let* total_episodes_node = require "total_episodes" in
              let* total_episodes = decode_int total_episodes_node in
              let last_metrics =
                match Snapshot.Record.find_opt "last_metrics" record with
                | Some snapshot -> (
                    match metrics_of_snapshot snapshot with
                    | Ok metrics -> metrics
                    | Error _ -> initial_metrics)
                | None -> initial_metrics
              in
              let current_obs, current_info = Env.reset env () in
              let state =
                {
                  policy_network;
                  baseline_network;
                  policy_optimizer;
                  baseline_optimizer;
                  policy_opt_state;
                  baseline_opt_state;
                  baseline_params;
                  rng;
                  config;
                  total_steps;
                  total_episodes;
                  current_obs;
                  current_info;
                  episode_steps_rev = [];
                  episode_return_acc = 0.0;
                  episode_length_acc = 0;
                  action_offset;
                  n_actions;
                  last_metrics;
                }
              in
              Ok (params, state)
    | _ -> Error "REINFORCE: invalid snapshot format"
  in
  match Checkpoint.load_snapshot_file_with ~path ~decode with
  | Ok result -> Ok result
  | Error err -> Error (Checkpoint.error_to_string err)