package bap-std

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Architecture

type x86 = [
  1. | `x86
  2. | `x86_64
]
val bin_shape_x86 : Core_kernel.Bin_prot.Shape.t
val __bin_read_x86__ : (int -> x86) Core_kernel.Bin_prot.Read.reader
val compare_x86 : x86 -> x86 -> int
val all_of_x86 : x86 list
val sexp_of_x86 : x86 -> Sexplib0.Sexp.t
val x86_of_sexp : Sexplib0.Sexp.t -> x86
val __x86_of_sexp__ : Sexplib0.Sexp.t -> x86
type arm = [
  1. | `armv4
  2. | `armv5
  3. | `armv6
  4. | `armv7
]
val bin_shape_arm : Core_kernel.Bin_prot.Shape.t
val __bin_read_arm__ : (int -> arm) Core_kernel.Bin_prot.Read.reader
val compare_arm : arm -> arm -> int
val all_of_arm : arm list
val sexp_of_arm : arm -> Sexplib0.Sexp.t
val arm_of_sexp : Sexplib0.Sexp.t -> arm
val __arm_of_sexp__ : Sexplib0.Sexp.t -> arm
type armeb = [
  1. | `armv4eb
  2. | `armv5eb
  3. | `armv6eb
  4. | `armv7eb
]
val bin_shape_armeb : Core_kernel.Bin_prot.Shape.t
val __bin_read_armeb__ : (int -> armeb) Core_kernel.Bin_prot.Read.reader
val compare_armeb : armeb -> armeb -> int
val all_of_armeb : armeb list
val sexp_of_armeb : armeb -> Sexplib0.Sexp.t
val armeb_of_sexp : Sexplib0.Sexp.t -> armeb
val __armeb_of_sexp__ : Sexplib0.Sexp.t -> armeb
type thumb = [
  1. | `thumbv4
  2. | `thumbv5
  3. | `thumbv6
  4. | `thumbv7
]
val bin_shape_thumb : Core_kernel.Bin_prot.Shape.t
val __bin_read_thumb__ : (int -> thumb) Core_kernel.Bin_prot.Read.reader
val compare_thumb : thumb -> thumb -> int
val all_of_thumb : thumb list
val sexp_of_thumb : thumb -> Sexplib0.Sexp.t
val thumb_of_sexp : Sexplib0.Sexp.t -> thumb
val __thumb_of_sexp__ : Sexplib0.Sexp.t -> thumb
type thumbeb = [
  1. | `thumbv4eb
  2. | `thumbv5eb
  3. | `thumbv6eb
  4. | `thumbv7eb
]
val bin_shape_thumbeb : Core_kernel.Bin_prot.Shape.t
val __bin_read_thumbeb__ : (int -> thumbeb) Core_kernel.Bin_prot.Read.reader
val compare_thumbeb : thumbeb -> thumbeb -> int
val all_of_thumbeb : thumbeb list
val sexp_of_thumbeb : thumbeb -> Sexplib0.Sexp.t
val thumbeb_of_sexp : Sexplib0.Sexp.t -> thumbeb
val __thumbeb_of_sexp__ : Sexplib0.Sexp.t -> thumbeb
type aarch64 = [
  1. | `aarch64
  2. | `aarch64_be
]
val bin_shape_aarch64 : Core_kernel.Bin_prot.Shape.t
val __bin_read_aarch64__ : (int -> aarch64) Core_kernel.Bin_prot.Read.reader
val compare_aarch64 : aarch64 -> aarch64 -> int
val all_of_aarch64 : aarch64 list
val sexp_of_aarch64 : aarch64 -> Sexplib0.Sexp.t
val aarch64_of_sexp : Sexplib0.Sexp.t -> aarch64
val __aarch64_of_sexp__ : Sexplib0.Sexp.t -> aarch64
type ppc = [
  1. | `ppc
  2. | `ppc64
  3. | `ppc64le
]
val bin_shape_ppc : Core_kernel.Bin_prot.Shape.t
val __bin_read_ppc__ : (int -> ppc) Core_kernel.Bin_prot.Read.reader
val compare_ppc : ppc -> ppc -> int
val all_of_ppc : ppc list
val sexp_of_ppc : ppc -> Sexplib0.Sexp.t
val ppc_of_sexp : Sexplib0.Sexp.t -> ppc
val __ppc_of_sexp__ : Sexplib0.Sexp.t -> ppc
type mips = [
  1. | `mips
  2. | `mipsel
  3. | `mips64
  4. | `mips64el
]
val bin_shape_mips : Core_kernel.Bin_prot.Shape.t
val __bin_read_mips__ : (int -> mips) Core_kernel.Bin_prot.Read.reader
val compare_mips : mips -> mips -> int
val all_of_mips : mips list
val sexp_of_mips : mips -> Sexplib0.Sexp.t
val mips_of_sexp : Sexplib0.Sexp.t -> mips
val __mips_of_sexp__ : Sexplib0.Sexp.t -> mips
type sparc = [
  1. | `sparc
  2. | `sparcv9
]
val bin_shape_sparc : Core_kernel.Bin_prot.Shape.t
val __bin_read_sparc__ : (int -> sparc) Core_kernel.Bin_prot.Read.reader
val compare_sparc : sparc -> sparc -> int
val all_of_sparc : sparc list
val sexp_of_sparc : sparc -> Sexplib0.Sexp.t
val sparc_of_sexp : Sexplib0.Sexp.t -> sparc
val __sparc_of_sexp__ : Sexplib0.Sexp.t -> sparc
type nvptx = [
  1. | `nvptx
  2. | `nvptx64
]
val bin_shape_nvptx : Core_kernel.Bin_prot.Shape.t
val __bin_read_nvptx__ : (int -> nvptx) Core_kernel.Bin_prot.Read.reader
val compare_nvptx : nvptx -> nvptx -> int
val all_of_nvptx : nvptx list
val sexp_of_nvptx : nvptx -> Sexplib0.Sexp.t
val nvptx_of_sexp : Sexplib0.Sexp.t -> nvptx
val __nvptx_of_sexp__ : Sexplib0.Sexp.t -> nvptx
type hexagon = [
  1. | `hexagon
]
val bin_shape_hexagon : Core_kernel.Bin_prot.Shape.t
val __bin_read_hexagon__ : (int -> hexagon) Core_kernel.Bin_prot.Read.reader
val compare_hexagon : hexagon -> hexagon -> int
val all_of_hexagon : hexagon list
val sexp_of_hexagon : hexagon -> Sexplib0.Sexp.t
val hexagon_of_sexp : Sexplib0.Sexp.t -> hexagon
val __hexagon_of_sexp__ : Sexplib0.Sexp.t -> hexagon
type r600 = [
  1. | `r600
]
val bin_shape_r600 : Core_kernel.Bin_prot.Shape.t
val __bin_read_r600__ : (int -> r600) Core_kernel.Bin_prot.Read.reader
val compare_r600 : r600 -> r600 -> int
val all_of_r600 : r600 list
val sexp_of_r600 : r600 -> Sexplib0.Sexp.t
val r600_of_sexp : Sexplib0.Sexp.t -> r600
val __r600_of_sexp__ : Sexplib0.Sexp.t -> r600
type systemz = [
  1. | `systemz
]
val bin_shape_systemz : Core_kernel.Bin_prot.Shape.t
val __bin_read_systemz__ : (int -> systemz) Core_kernel.Bin_prot.Read.reader
val compare_systemz : systemz -> systemz -> int
val all_of_systemz : systemz list
val sexp_of_systemz : systemz -> Sexplib0.Sexp.t
val systemz_of_sexp : Sexplib0.Sexp.t -> systemz
val __systemz_of_sexp__ : Sexplib0.Sexp.t -> systemz
type xcore = [
  1. | `xcore
]
val bin_shape_xcore : Core_kernel.Bin_prot.Shape.t
val __bin_read_xcore__ : (int -> xcore) Core_kernel.Bin_prot.Read.reader
val compare_xcore : xcore -> xcore -> int
val all_of_xcore : xcore list
val sexp_of_xcore : xcore -> Sexplib0.Sexp.t
val xcore_of_sexp : Sexplib0.Sexp.t -> xcore
val __xcore_of_sexp__ : Sexplib0.Sexp.t -> xcore
type unknown = [
  1. | `unknown
]
val bin_shape_unknown : Core_kernel.Bin_prot.Shape.t
val __bin_read_unknown__ : (int -> unknown) Core_kernel.Bin_prot.Read.reader
val compare_unknown : unknown -> unknown -> int
val all_of_unknown : unknown list
val sexp_of_unknown : unknown -> Sexplib0.Sexp.t
val unknown_of_sexp : Sexplib0.Sexp.t -> unknown
val __unknown_of_sexp__ : Sexplib0.Sexp.t -> unknown
include Core_kernel.Bin_prot.Binable.S with type t := t
include Ppx_enumerate_lib.Enumerable.S with type t := t
val all : t list
val __t_of_sexp__ : Sexplib0.Sexp.t -> t
val of_string : string -> t option

of_string s will try to be clever and to capture all commonly known synonyms, e.g., of_string "i686" will work

val addr_size : t -> addr_size

addr_size arch returns an address size for a a given arch

val endian : t -> endian

endian arch returns a word endianness of the arch

the architecture (ISA) of a program.

unit_slot the arch property of the unit.

Use this slot to enable backward compatibility of the Arch.t type with the Theory.Target.t by registering a promise that translates Theory.Target.t to Arch.t.

Example,

let target = Theory.Target.declare ~package:"foo" "r600"
let () = KB.promise Arch.unit_slot @@ fun unit ->
  KB.collect Theory.Unit.target >>| fun t ->
  if Theory.Target.equal t target then `r600
  else `unknown

arch type implements Regular interface

include Regular.Std.Regular.S with type t := t
include Core_kernel.Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader

This function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.

val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
include Sexplib0.Sexpable.S with type t := t
val t_of_sexp : Sexplib0.Sexp.t -> t
val sexp_of_t : t -> Sexplib0.Sexp.t
include Ppx_compare_lib.Comparable.S with type t := t
include Regular.Std.Printable.S with type t := t
val to_string : t -> string

to_string x returns a human-readable representation of x

val str : unit -> t -> string

str () t is formatted output function that matches "%a" conversion format specifier in functions, that prints to string, e.g., sprintf, failwithf, errorf and, surprisingly all Lwt printing function, including Lwt_io.printf and logging (or any other function with type ('a,unit,string,...) formatN`. Example:

Or_error.errorf "type %a is not valid for %a"
  Type.str ty Exp.str exp
val pps : unit -> t -> string

synonym for str

val ppo : Core_kernel.Out_channel.t -> t -> unit

will print to a standard output_channel, useful for using in printf, fprintf, etc.

val pp_seq : Stdlib.Format.formatter -> t Core_kernel.Sequence.t -> unit

prints a sequence of values of type t

this will include pp function from Core that has type t printer, and can be used in Format.printf family of functions

include Core_kernel.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unit
include Core_kernel.Comparable.S_binable with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t -> t -> bool
val (>) : t -> t -> bool
val (<) : t -> t -> bool
val (<>) : t -> t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : t -> t -> t
val max : t -> t -> t
val ascending : t -> t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool

between t ~low ~high means low <= t <= high

val clamp_exn : t -> min:t -> max:t -> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
type comparator_witness
val validate_lbound : min:t Core.Maybe_bound.t -> t Validate.check
val validate_ubound : max:t Core.Maybe_bound.t -> t Validate.check
val validate_bound : min:t Core.Maybe_bound.t -> max:t Core.Maybe_bound.t -> t Validate.check
include Core_kernel.Hashable.S_binable with type t := t
include Ppx_hash_lib.Hashable.S with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
val hashable : t Base.Hashable.t
module Table : Core.Hashtbl.S_binable with type key = t
module Hash_set : Core.Hash_set.S_binable with type elt = t
module Hash_queue : Core.Hash_queue.S with type key = t
include Regular.Std.Data.S with type t := t
type info = string * [ `Ver of string ] * string option

name,Ver v,desc information attached to a particular reader or writer.

val version : string

Data representation version. After any change in data representation the version should be increased.

Serializers that are derived from a data representation must have the same version as a version of the data structure, from which it is derived. This kind of serializers can only read and write data of the same version.

Other serializers can actually read and write data independent on its representation version. A serializer, that can't store data of current version simply shouldn't be added to a set of serializers.

It is assumed, that if a reader and a writer has the same name and version, then whatever was written by the writer should be readable by the reader. The round-trip equality is not required, thus it is acceptable if some information is lost.

It is also possible, that a reader and a writer that has the same name are compatible. In that case it is recommended to use semantic versioning.

val size_in_bytes : ?ver:string -> ?fmt:string -> t -> int

size_in_bytes ?ver ?fmt datum returns the amount of bytes that is needed to represent datum in the given format and version

val of_bytes : ?ver:string -> ?fmt:string -> Regular.Std.bytes -> t

of_bytes ?ver ?fmt bytes deserializes a value from bytes.

val to_bytes : ?ver:string -> ?fmt:string -> t -> Regular.Std.bytes

to_bytes ?ver ?fmt datum serializes a datum to a sequence of bytes.

val blit_to_bytes : ?ver:string -> ?fmt:string -> Regular.Std.bytes -> t -> int -> unit

blit_to_bytes ?ver ?fmt buffer datum offset copies a serialized representation of datum into a buffer, starting from the offset.

val of_bigstring : ?ver:string -> ?fmt:string -> Core_kernel.bigstring -> t

of_bigstring ?ver ?fmt buf deserializes a datum from bigstring

val to_bigstring : ?ver:string -> ?fmt:string -> t -> Core_kernel.bigstring

of_bigstring ?ver ?fmt datum serializes a datum to a sequence of bytes represented as bigstring

val blit_to_bigstring : ?ver:string -> ?fmt:string -> Core_kernel.bigstring -> t -> int -> unit

blit_to_bigstring ?ver ?fmt buffer datum offset copies a serialized representation of datum into a buffer, starting from offset.

module Io : sig ... end

Input/Output functions for the given datum.

module Cache : sig ... end

Data cache.

val add_reader : ?desc:string -> ver:string -> string -> t Regular.Std.reader -> unit

add_reader ?desc ~ver name reader registers a new reader with a provided name, version ver and optional description desc

val add_writer : ?desc:string -> ver:string -> string -> t Regular.Std.writer -> unit

add_writer ?desc ~ver name writer registers a new writer with a provided name, version ver and optional description desc

val available_readers : unit -> info list

available_reader () lists available readers for the data type

val default_reader : unit -> info

default_reader returns information about default reader

val set_default_reader : ?ver:string -> string -> unit

set_default_reader ?ver name sets new default reader. If version is not specified then the latest available version is used. Raises an exception if a reader with a given name doesn't exist.

val with_reader : ?ver:string -> string -> (unit -> 'a) -> 'a

with_reader ?ver name operation temporary sets a default reader to a reader with a specified name and version. The default reader is restored after operation is finished.

val available_writers : unit -> info list

available_writer () lists available writers for the data type

val default_writer : unit -> info

default_writer returns information about the default writer

val set_default_writer : ?ver:string -> string -> unit

set_default_writer ?ver name sets new default writer. If version is not specified then the latest available version is used. Raises an exception if a writer with a given name doesn't exist.

val with_writer : ?ver:string -> string -> (unit -> 'a) -> 'a

with_writer ?ver name operation temporary sets a default writer to a writer with a specified name and version. The default writer is restored after operation is finished.

val default_printer : unit -> info option

default_writer optionally returns an information about default printer

val set_default_printer : ?ver:string -> string -> unit

set_default_printer ?ver name sets new default printer. If version is not specified then the latest available version is used. Raises an exception if a printer with a given name doesn't exist.

val with_printer : ?ver:string -> string -> (unit -> 'a) -> 'a

with_printer ?ver name operation temporary sets a default printer to a printer with a specified name and version. The default printer is restored after operation is finished.

Low level access to serializers

val find_reader : ?ver:string -> string -> t Regular.Std.reader option

find_reader ?ver name lookups a reader with a given name. If version is not specified, then a reader with maximum version is returned.

val find_writer : ?ver:string -> string -> t Regular.Std.writer option

find_writer ?ver name lookups a writer with a given name. If version is not specified, then a writer with maximum version is returned.

OCaml

Innovation. Community. Security.