A call graph representation. In this representations, nodes are identifiers of subroutine terms, and edges, representing calls, are marked with a list of callsites, where callsite is denoted by a jump term.
A graph is a set of relations between objects, defined as a pair of two sets
G = (V,E).
where $V$ is a set of vertices and E is a set of vertices, which is a subset of V x V
, therefore a more precise definition is a 6-tuple, consisting of a set of nodes, edges, node labels, edge labels, and two functions that maps nodes and edges to their corresponding labels:
G = (N, E, N', E', ν : N -> N', ε : E -> E'),
where set E
is a subset of N × N
.
With this general framework an unlabeled graph can be represented as:
G = (N, E, N, E, ν = λx.x, ε = λx.x)
Another possible representation of an unlabeled graph would be:
G = (N, E, {u}, {v}, ν = λx.u, ε = λx.v).
Implementations are free to choose any suitable representation of graph data structure, if it conforms to the graph signature and all operations follows the described semantics and properties of a graph structure are preserved.
The axiomatic semantics of operations on a graph is described by a set of postconditions. To describe the semantics of an operation in terms of input and output arguments, we project graphs to its fields with the following notation <field>(<graph>)
, e.g., N(g)
is a set of nodes of graph g
.
nodes g
returns all nodes of graph g
in an unspecified order
edges g
returns all edges of graph g
in an unspecified order
is_directed
is true if graph is a directed graph.
val number_of_edges : t -> int
number_of_edges g
returns the size of a graph g
.
val number_of_nodes : t -> int
number_of_nodes g
returns the order of a graph g
All graphs provides a common interface for any opaque data structure
include Regular.Std.Opaque.S with type t := t
include Core_kernel.Comparable.S with type t := t
include Base.Comparable.S with type t := t
val ascending : t -> t -> int
ascending
is identical to compare
. descending x y = ascending y x
. These are intended to be mnemonic when used like List.sort ~compare:ascending
and List.sort
~cmp:descending
, since they cause the list to be sorted in ascending or descending order, respectively.
val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool
between t ~low ~high
means low <= t <= high
val clamp_exn : t -> min:t -> max:t -> t
clamp_exn t ~min ~max
returns t'
, the closest value to t
such that between t' ~low:min ~high:max
is true.
Raises if not (min <= max)
.
All graphs are printable.
include Regular.Std.Printable.S with type t := t
val to_string : t -> string
to_string x
returns a human-readable representation of x
val str : unit -> t -> string
str () t
is formatted output function that matches "%a" conversion format specifier in functions, that prints to string, e.g., sprintf
, failwithf
, errorf
and, surprisingly all Lwt
printing function, including Lwt_io.printf
and logging (or any other function with type ('a,unit,string,...) formatN`. Example:
Or_error.errorf "type %a is not valid for %a"
Type.str ty Exp.str exp
val pps : unit -> t -> string
will print to a standard output_channel
, useful for using in printf
, fprintf
, etc.
prints a sequence of values of type t
this will include pp
function from Core
that has type t printer
, and can be used in Format.printf
family of functions
include Core_kernel.Pretty_printer.S with type t := t