Source file ac.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
open Options
open Format
module HS = Hstring
module Sy = Symbols
module type S = sig
type r
type t = r Sig.ac
val make : Expr.t -> r * Expr.t list
val is_mine_symb : Sy.t -> Ty.t -> bool
val compare : t -> t -> int
val equal : t -> t -> bool
val hash : t -> int
val type_info : t -> Ty.t
val print : formatter -> t -> unit
val leaves : t -> r list
val subst : r -> r -> t -> r
val add : Sy.t -> r * int -> (r * int) list -> (r * int) list
val fully_interpreted : Sy.t -> bool
val abstract_selectors : t -> (r * r) list -> r * (r * r) list
val compact : (r * int) list -> (r * int) list
end
module Make (X : Sig.X) = struct
open Sig
type r = X.r
type t = X.r Sig.ac
module Debug = struct
let print_x fmt v =
match X.leaves v with
| [w] when X.equal v w -> fprintf fmt "%a" X.print v
| _ -> fprintf fmt "(%a)" X.print v
let rec pr_elt sep fmt (e,n) =
assert (n >=0);
if n = 0 then ()
else fprintf fmt "%s%a%a" sep print_x e (pr_elt sep) (e,n-1)
let pr_xs sep fmt = function
| [] -> assert false
| (p,n)::l ->
fprintf fmt "%a" print_x p;
List.iter (fprintf fmt "%a" (pr_elt sep))((p,n-1)::l)
let print fmt { h; l; _ } =
if Sy.equal h (Sy.Op Sy.Mult) then
fprintf fmt "%a" (pr_xs "'*'") l
else
fprintf fmt "%a(%a)" Sy.print h (pr_xs ",") l
let assert_compare a b c1 c2 =
assert (
if not (c1 = 0 && c2 = 0 ||
c1 < 0 && c2 > 0 ||
c1 > 0 && c2 < 0) then begin
fprintf fmt "Ac.compare:@.%a vs @.%a@. = %d@.@." print a print b c1;
fprintf fmt "But@.";
fprintf fmt "Ac.compare:@.%a vs @.%a@. = %d@.@." print b print a c2;
false
end
else true
)
let subst p v tm =
if debug_ac () then
fprintf fmt "[ac] subst %a by %a in %a@."
X.print p X.print v X.print (X.ac_embed tm)
end
let print = Debug.print
let flatten h (r,m) acc =
match X.ac_extract r with
| Some ac when Sy.equal ac.h h ->
List.fold_left (fun z (e,n) -> (e,m * n) :: z) acc ac.l
| _ -> (r,m) :: acc
let sort = List.fast_sort (fun (x,_) (y,_) -> X.str_cmp x y)
let compact xs =
let rec f acc = function
| [] -> acc
| [(x,n)] -> (x,n) :: acc
| (x,n) :: (y,m) :: r ->
if X.equal x y then f acc ((x,n+m) :: r)
else f ((x,n)::acc) ((y,m) :: r)
in
f [] (sort xs)
let fold_flatten sy f =
List.fold_left (fun z (rt,n) -> flatten sy ((f rt),n) z) []
let abstract2 sy t r acc =
match X.ac_extract r with
| Some ac when Sy.equal sy ac.h -> r, acc
| None -> r, acc
| Some _ -> match Expr.term_view t with
| Expr.Term { Expr.f = Sy.Name (hs, Sy.Ac); xs; ty; _ } ->
let aro_sy = Sy.name ("@" ^ (HS.view hs)) in
let aro_t = Expr.mk_term aro_sy xs ty in
let eq = Expr.mk_eq ~iff:false aro_t t in
X.term_embed aro_t, eq::acc
| Expr.Term { Expr.f = Sy.Op Sy.Mult; xs; ty; _ } ->
let aro_sy = Sy.name "@*" in
let aro_t = Expr.mk_term aro_sy xs ty in
let eq = Expr.mk_eq ~iff:false aro_t t in
X.term_embed aro_t, eq::acc
| Expr.Term { Expr.ty; _ } ->
let k = Expr.fresh_name ty in
let eq = Expr.mk_eq ~iff:false k t in
X.term_embed k, eq::acc
| Expr.Not_a_term _ -> assert false
let make t =
Timers.exec_timer_start Timers.M_AC Timers.F_make;
let x = match Expr.term_view t with
| Expr.Term { Expr.f = sy; xs = [a;b]; ty; _ } when Sy.is_ac sy ->
let ra, ctx1 = X.make a in
let rb, ctx2 = X.make b in
let ra, ctx = abstract2 sy a ra (ctx1 @ ctx2) in
let rb, ctx = abstract2 sy b rb ctx in
let rxs = [ ra,1 ; rb,1 ] in
X.ac_embed {h=sy; l=compact (fold_flatten sy (fun x -> x) rxs); t=ty;
distribute = true},
ctx
| _ -> assert false
in
Timers.exec_timer_pause Timers.M_AC Timers.F_make;
x
let is_mine_symb sy _ = Options.no_ac() == false && Sy.is_ac sy
let type_info { t = ty; _ } = ty
let leaves { l; _ } = List.fold_left (fun z (a,_) -> (X.leaves a) @ z)[] l
let rec mset_cmp = function
| [] , [] -> 0
| [] , _::_ -> -1
| _::_ , [] -> 1
| (a,m)::r , (b,n)::s ->
let c = X.str_cmp a b in
if c <> 0 then c
else
let c = m - n in
if c <> 0 then c
else mset_cmp(r,s)
let size = List.fold_left (fun z (_,n) -> z + n) 0
module SX = Set.Make(struct type t=r let compare = X.str_cmp end)
let leaves_list l =
let l =
List.fold_left
(fun acc (x,n) ->
let sx = List.fold_right SX.add (X.leaves x) SX.empty in
SX.fold (fun lv acc -> (lv, n) :: acc) sx acc
) []l
in
compact l
let compare { h = f; l = x; _ } { h = g; l = y; _ } =
let c = Sy.compare f g in
if c <> 0 then c
else
let llx = leaves_list x in
let lly = leaves_list y in
let c = size llx - size lly in
if c <> 0 then c
else
let c = mset_cmp (leaves_list x , leaves_list y) in
if c <> 0 then c
else mset_cmp (x , y)
let compare a b =
let c1 = compare a b in
let c2 = compare b a in
Debug.assert_compare a b c1 c2;
c1
let equal { h = f; l = lx; _ } { h = g; l = ly; _ } =
Sy.equal f g &&
try List.for_all2 (fun (x, m) (y, n) -> m = n && X.equal x y) lx ly
with Invalid_argument _ -> false
let hash { h = f; l; t; _ } =
let acc = Sy.hash f + 19 * Ty.hash t in
abs (List.fold_left (fun acc (x, y) -> acc + 19 * (X.hash x + y)) acc l)
let subst p v ({ h; l; _ } as tm) =
Options.exec_thread_yield ();
Timers.exec_timer_start Timers.M_AC Timers.F_subst;
Debug.subst p v tm;
let t = X.color {tm with l=compact (fold_flatten h (X.subst p v) l)} in
Timers.exec_timer_pause Timers.M_AC Timers.F_subst;
t
let add h arg arg_l =
Timers.exec_timer_start Timers.M_AC Timers.F_add;
let r = compact (flatten h arg arg_l) in
Timers.exec_timer_pause Timers.M_AC Timers.F_add;
r
let fully_interpreted _ = true
let abstract_selectors ({ l = args; _ } as ac) acc =
let args, acc =
List.fold_left
(fun (args, acc) (r, i) ->
let r, acc = X.abstract_selectors r acc in
(r, i) :: args, acc
)([],acc) args
in
let xac = X.ac_embed {ac with l = compact args} in
xac, acc
end