Source file functors.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
open Ints
open Signatures
open Key_value
open Nodes
(** [match_prefix k p m] returns [true] if and only if the key [k] has prefix [p] up to bit [m]. *)
let match_prefix k p m = mask k m = p
(** Returns true if the branch caracterized by the two first arguments
would contain the branch caracterized by the second (as right or left subtree) *)
let [@inline always] branches_before l_prefix (l_mask : mask) (r_prefix : intkey) (r_mask : mask) =
unsigned_lt (r_mask :> int) (l_mask :> int) && match_prefix (r_prefix :> int) l_prefix l_mask
module MakeCustomHeterogeneousMap
(Key:HETEROGENEOUS_KEY)
(Value:HETEROGENEOUS_VALUE)
(NODE:NODE with type 'a key = 'a Key.t and type ('key,'map) value = ('key,'map) Value.t)
: HETEROGENEOUS_MAP with type 'a key = 'a Key.t
and type ('key,'map) value = ('key,'map) Value.t
and type 'a t = 'a NODE.t
= struct
module Core = struct
include NODE
let rec findint: type a map. a Key.t -> int -> map t -> (a,map) value =
fun witness searched m -> match NODE.view m with
| Leaf{key;value} -> begin
match Key.polyeq key witness with
| Eq -> value
| Diff -> raise Not_found
end
| Branch{branching_bit;tree0;tree1;_} ->
if ((branching_bit :> int) land searched == 0)
then findint witness searched tree0
else findint witness searched tree1
| Empty -> raise Not_found
let find searched m = findint searched (Key.to_int searched) m
let find_opt searched m = match find searched m with
| x -> Some x
| exception Not_found -> None
end
include Core
type 'map key_value_pair = KeyValue: 'a Key.t * ('a,'map) value -> 'map key_value_pair
let join pa treea pb treeb =
let m = branching_bit (pa :> int) (pb :> int) in
let p = mask (pa :> int) m in
if ((pa :> int) land (m :> int)) = 0 then
branch ~prefix:p ~branching_bit:m ~tree0:treea ~tree1:treeb
else
branch ~prefix:p ~branching_bit:m ~tree0:treeb ~tree1:treea
let singleton = leaf
let rec cardinal m =
match NODE.view m with
| Empty -> 0
| Leaf _ -> 1
| Branch{tree0; tree1; _ } -> cardinal tree0 + cardinal tree1
let is_singleton m =
match NODE.view m with
| Leaf{key;value} -> Some (KeyValue(key,value))
| _ -> None
let rec split: type a map. a key -> int -> map t -> map t * ((a,map) value) option * map t =
fun split_key split_key_int m -> match NODE.view m with
| Leaf{key;value} -> begin
match Key.polyeq key split_key with
| Eq -> NODE.empty, Some value, NODE.empty
| Diff ->
if unsigned_lt (Key.to_int key) split_key_int then
m, None, NODE.empty else NODE.empty, None, m
end
| Branch{prefix;branching_bit;tree0;tree1} ->
if not (match_prefix split_key_int prefix branching_bit) then
if unsigned_lt (prefix :> int) split_key_int
then m, None, NODE.empty
else NODE.empty, None, m
else if ((branching_bit :> int) land split_key_int == 0) then
let left, found, right = split split_key split_key_int tree0 in
left, found, NODE.branch ~prefix ~branching_bit ~tree0:right ~tree1
else
let left, found, right = split split_key split_key_int tree1 in
NODE.branch ~prefix ~branching_bit ~tree0 ~tree1:left, found, right
| Empty -> NODE.empty, None, NODE.empty
let split k m = split k (Key.to_int k) m
let mem searched m =
match findint searched (Key.to_int searched) m with
| exception Not_found -> false
| _ -> true
let insert: type a map. a Key.t -> ((a,map) Value.t option -> (a,map) Value.t) -> map t -> map t =
fun thekey f t ->
let thekeyint = Key.to_int thekey in
let exception Unmodified in
try
let rec loop t = match NODE.view t with
| Empty -> leaf thekey (f None)
| Leaf{key;value=old} ->
begin match Key.polyeq key thekey with
| Eq ->
let newv = f (Some old) in
if newv == old then raise Unmodified
else leaf key newv
| Diff ->
let keyint = (Key.to_int key) in
join thekeyint (leaf thekey (f None)) keyint t
end
| Branch{prefix;branching_bit;tree0;tree1} ->
if match_prefix thekeyint prefix branching_bit then
if ((branching_bit :> int) land thekeyint) == 0
then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1
else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1)
else join thekeyint (leaf thekey (f None)) (prefix :> int) t
in loop t
with Unmodified -> t
let update: type a map. a Key.t -> ((a,map) Value.t option -> (a,map) Value.t option) -> map t -> map t =
fun thekey f t ->
let thekeyint = Key.to_int thekey in
let exception Unmodified in
try
let rec loop t = match NODE.view t with
| Empty -> begin
match (f None) with
| None -> raise Unmodified
| Some v -> leaf thekey v
end
| Leaf{key;value=old} ->
begin match Key.polyeq key thekey with
| Eq ->
let newv = f (Some old) in
begin match newv with
| None -> empty
| Some newv when newv == old -> raise Unmodified
| Some newv -> leaf key newv end
| Diff ->
let keyint = (Key.to_int key) in
begin match f None with
| None -> raise Unmodified
| Some value -> join thekeyint (leaf thekey value) keyint t
end
end
| Branch{prefix;branching_bit;tree0;tree1} ->
if match_prefix thekeyint prefix branching_bit then
if (thekeyint land (branching_bit :> int)) == 0
then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1
else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1)
else begin match f None with
| None -> raise Unmodified
| Some value -> join thekeyint (leaf thekey value) (prefix :> int) t
end
in loop t
with Unmodified -> t
let rec removeint to_remove m = match NODE.view m with
| Leaf{key;_} when (Key.to_int key) == to_remove -> empty
| (Empty | Leaf _) -> m
| Branch{prefix;branching_bit;tree0;tree1} ->
if ((branching_bit :> int) land to_remove) == 0
then begin
let tree0' = removeint to_remove tree0 in
if tree0' == empty then tree1
else if tree0' == tree0 then m
else branch ~prefix ~branching_bit ~tree0:tree0' ~tree1
end
else begin
let tree1' = removeint to_remove tree1 in
if tree1' == empty then tree0
else if tree1' == tree1 then m
else branch ~prefix ~branching_bit ~tree0 ~tree1:tree1'
end
let add key value t = insert key (fun _ -> value) t
let remove to_remove m = removeint (Key.to_int to_remove) m
module WithForeign(Map2:NODE_WITH_FIND with type 'a key = 'a key) = struct
type ('map1,'map2) polyinter_foreign = { f: 'a. 'a key -> ('a,'map1) value -> ('a,'map2) Map2.value -> ('a,'map1) value } [@@unboxed]
let rec nonidempotent_inter f ta tb =
match NODE.view ta,Map2.view tb with
| Empty, _ | _, Empty -> NODE.empty
| Leaf{key;value},_ ->
(try let res = Map2.find key tb in
let newval = (f.f key value res) in
if newval == value then ta
else NODE.leaf key newval
with Not_found -> NODE.empty)
| _,Leaf{key;value} ->
(try let res = find key ta in
NODE.leaf key (f.f key res value)
with Not_found -> NODE.empty)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = (nonidempotent_inter f ta0 tb0) in
let tree1 = (nonidempotent_inter f ta1 tb1) in
if(ta0 == tree0 && ta1 == tree1)
then ta
else NODE.branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then nonidempotent_inter f ta0 tb
else nonidempotent_inter f ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then nonidempotent_inter f ta tb0
else nonidempotent_inter f ta tb1
else NODE.empty
type ('map2,'map1) polyfilter_map = { f: 'a. 'a Key.t -> ('a,'map2) Map2.value -> ('a,'map1) value option } [@@unboxed]
let rec filter_map_no_share (f:('b,'c) polyfilter_map) m = match Map2.view m with
| Empty -> empty
| Leaf{key;value} -> (match (f.f key value) with Some v -> leaf key v | None -> empty)
| Branch{prefix;branching_bit;tree0;tree1} ->
let tree0 = filter_map_no_share f tree0 in
let tree1 = filter_map_no_share f tree1 in
branch ~prefix ~branching_bit ~tree0 ~tree1
(** Add all the bindings in tb to ta (after transformation). *)
type ('map1,'map2) polyupdate_multiple = { f: 'a. 'a Key.t -> ('a,'map1) value option -> ('a,'map2) Map2.value -> ('a,'map1) value option } [@@unboxed]
let rec update_multiple_from_foreign (tb:'map2 Map2.t) f (ta:'map1 t) =
let upd_tb tb = filter_map_no_share {f=fun key value -> f.f key None value} tb in
match NODE.view ta,Map2.view tb with
| Empty, _ -> upd_tb tb
| _, Empty -> ta
| _,Leaf{key;value} -> update key (fun maybeval -> f.f key maybeval value) ta
| Leaf{key;value},_ ->
let found = ref false in
let f: type a. a key -> (a,'map2) Map2.value -> (a,'map1) value option =
fun curkey curvalue ->
match Key.polyeq key curkey with
| Eq -> found := true; f.f curkey (Some value) curvalue
| Diff -> f.f curkey None curvalue
in
let res = filter_map_no_share {f} tb in
if !found then res
else add key value res
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = update_multiple_from_foreign tb0 f ta0 in
let tree1 = update_multiple_from_foreign tb1 f ta1 in
if tree0 == ta0 && tree1 == ta1 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then
let ta0' = update_multiple_from_foreign tb f ta0 in
if ta0' == ta0 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0' ~tree1:ta1
else
let ta1' = update_multiple_from_foreign tb f ta1 in
if ta1' == ta1 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:ta1'
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then
let tree0 = update_multiple_from_foreign tb0 f ta in
let tree1 = upd_tb tb1 in
branch ~prefix:pb ~branching_bit:mb ~tree0 ~tree1
else
let tree0 = upd_tb tb0 in
let tree1 = update_multiple_from_foreign tb1 f ta in
branch ~prefix:pb ~branching_bit:mb ~tree0 ~tree1
else join (pa :> int) ta (pb :> int) (upd_tb tb)
type ('map1,'map2,'map3) polyupdate_multiple_inter = { f: 'a. 'a Key.t -> ('a,'map1) value -> ('a,'map2) Map2.value -> ('a,'map3) value option } [@@unboxed]
let rec update_multiple_from_inter_with_foreign tb f ta =
match NODE.view ta, Map2.view tb with
| Empty, _ -> ta
| _, Empty -> ta
| Leaf{key;value},_ ->
begin match Map2.find key tb with
| exception Not_found -> ta
| foundv -> begin
match f.f key value foundv with
| None -> empty
| Some v when v == value -> ta
| Some v -> leaf key v
end
end
| _,Leaf{key;value} ->
update key (fun v -> match v with None -> None | Some v -> f.f key v value) ta
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = update_multiple_from_inter_with_foreign tb0 f ta0 in
let tree1 = update_multiple_from_inter_with_foreign tb1 f ta1 in
if tree0 == ta0 && tree1 == ta1 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then
let ta0' = update_multiple_from_inter_with_foreign tb f ta0 in
if ta0' == ta0 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0' ~tree1:ta1
else
let ta1' = update_multiple_from_inter_with_foreign tb f ta1 in
if ta1' == ta1 then ta
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:ta1'
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then update_multiple_from_inter_with_foreign tb0 f ta
else update_multiple_from_inter_with_foreign tb1 f ta
else ta
type ('map1, 'map2) polydifference = ('map1,'map2,'map1) polyupdate_multiple_inter
let rec difference f ta tb =
match NODE.view ta, Map2.view tb with
| Empty, _
| _, Empty -> ta
| Leaf{key;value=va},_ -> (try let vb = Map2.find key tb in
match f.f key va vb with
| None -> empty
| Some v -> if v == va then ta else leaf key v
with Not_found -> ta)
| _,Leaf{key;value} -> update key (function None -> None | Some v -> f.f key v value) ta
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = difference f ta0 tb0 in
let tree1 = difference f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then branch ~prefix:pa ~branching_bit:ma ~tree0:(difference f ta0 tb) ~tree1:ta1
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(difference f ta1 tb)
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then difference f ta tb0
else difference f ta tb1
else ta
type ('a, 'b) key_value_value = KeyValueValue: 'k key * ('k, 'a) value * ('k, 'b) Map2.value -> ('a,'b) key_value_value
let rec min_binding_inter ta tb =
match NODE.view ta,Map2.view tb with
| Empty, _ | _, Empty -> None
| Leaf{key;value},_ ->
(try Some (KeyValueValue(key,value,Map2.find key tb))
with Not_found -> None)
| _,Leaf{key;value} ->
(try Some (KeyValueValue(key,find key ta,value))
with Not_found -> None)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
match min_binding_inter ta0 tb0 with
| None -> min_binding_inter ta1 tb1
| some -> some
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then min_binding_inter ta0 tb
else min_binding_inter ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then min_binding_inter ta tb0
else min_binding_inter ta tb1
else None
let rec max_binding_inter ta tb =
match NODE.view ta, Map2.view tb with
| Empty, _ | _, Empty -> None
| Leaf{key;value},_ ->
(try Some (KeyValueValue(key,value,Map2.find key tb))
with Not_found -> None)
| _,Leaf{key;value} ->
(try Some (KeyValueValue(key,find key ta,value))
with Not_found -> None)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
match max_binding_inter ta1 tb1 with
| None -> max_binding_inter ta0 tb0
| some -> some
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then max_binding_inter ta0 tb
else max_binding_inter ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then max_binding_inter ta tb0
else max_binding_inter ta tb1
else None
end
include WithForeign(Core)
let rec unsigned_min_binding x = match NODE.view x with
| Empty -> raise Not_found
| Leaf{key;value} -> KeyValue(key,value)
| Branch{tree0;_} -> unsigned_min_binding tree0
let rec unsigned_max_binding x = match NODE.view x with
| Empty -> raise Not_found
| Leaf{key;value} -> KeyValue(key,value)
| Branch{tree1;_} -> unsigned_max_binding tree1
type ('map1,'map2) polymapi = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t } [@@unboxed]
let rec mapi (f:('map1,'map1) polymapi) m = match NODE.view m with
| Empty -> empty
| Leaf{key;value} ->
let newval = (f.f key value) in
if newval == value
then m
else leaf key newval
| Branch{prefix;branching_bit;tree0;tree1} ->
let newtree0 = mapi f tree0 in
let newtree1 = mapi f tree1 in
if tree0 == newtree0 && tree1 == newtree1 then m
else branch ~prefix ~branching_bit ~tree0:newtree0 ~tree1:newtree1
let rec mapi_no_share (f:('map1,'map2) polymapi) m = match NODE.view m with
| Empty -> empty
| Leaf{key;value} -> leaf key (f.f key value)
| Branch{prefix;branching_bit;tree0;tree1} ->
let tree0 = mapi_no_share f tree0 in
let tree1 = mapi_no_share f tree1 in
branch ~prefix ~branching_bit ~tree0 ~tree1
type ('map1,'map2) polymap = { f: 'a. ('a,'map1) Value.t -> ('a,'map2) Value.t } [@@unboxed]
let map (f:('map1,'map1) polymap) m = mapi { f=fun _ v -> f.f v } m
let map_no_share (f:('map1,'map2) polymap) m = mapi_no_share { f=fun _ v -> f.f v } m
let rec filter_map (f:('map1,'map1) polyfilter_map) m = match NODE.view m with
| Empty -> empty
| Leaf{key;value} ->
(match f.f key value with
| None -> empty
| Some newval -> if newval == value then m else leaf key newval)
| Branch{prefix;branching_bit;tree0;tree1} ->
let newtree0 = filter_map f tree0 in
let newtree1 = filter_map f tree1 in
if tree0 == newtree0 && tree1 == newtree1 then m
else branch ~prefix ~branching_bit ~tree0:newtree0 ~tree1:newtree1
type 'map polypretty = { f: 'a. Format.formatter -> 'a Key.t -> ('a, 'map) Value.t -> unit } [@@unboxed]
let rec pretty ?(pp_sep=Format.pp_print_cut) (f : 'map polypretty) fmt m =
match NODE.view m with
| Empty -> ()
| Leaf{key;value} -> (f.f fmt key value)
| Branch{tree0; tree1; _} ->
pretty f ~pp_sep fmt tree0;
pp_sep fmt ();
pretty f ~pp_sep fmt tree1
let rec pop_unsigned_minimum m = match NODE.view m with
| Empty -> None
| Leaf{key;value} -> Some (KeyValue(key,value),empty)
| Branch{prefix;branching_bit;tree0;tree1} ->
match pop_unsigned_minimum tree0 with
| None -> pop_unsigned_minimum tree1
| Some(res,tree0') ->
let restree =
if is_empty tree0' then tree1
else branch ~prefix ~branching_bit ~tree0:tree0' ~tree1
in Some(res,restree)
let rec pop_unsigned_maximum m = match NODE.view m with
| Empty -> None
| Leaf{key;value} -> Some (KeyValue(key,value),empty)
| Branch{prefix;branching_bit;tree0;tree1} ->
match pop_unsigned_maximum tree1 with
| None -> pop_unsigned_maximum tree0
| Some(res,tree1') ->
let restree =
if is_empty tree1' then tree0
else branch ~prefix ~branching_bit ~tree0 ~tree1:tree1'
in Some(res,restree)
type 'map polyinsert = { f: 'a . key:'a Key.t -> old:('a,'map) Value.t -> value:('a,'map) Value.t -> ('a,'map) Value.t } [@@unboxed]
let insert_for_union: type a map. map polyinsert -> a Key.t -> (a,map) Value.t -> map t -> map t =
fun f thekey value t ->
let thekeyint = Key.to_int thekey in
let exception Unmodified in
try
let rec loop t = match NODE.view t with
| Empty -> leaf thekey value
| Leaf{key;value=old} ->
begin match Key.polyeq key thekey with
| Eq ->
if value == old then raise Unmodified else
let newv = f.f ~key ~old ~value in
if newv == old then raise Unmodified
else leaf key newv
| Diff ->
let keyint = (Key.to_int key) in
join thekeyint (leaf thekey value) keyint t
end
| Branch{prefix;branching_bit;tree0;tree1} ->
if match_prefix thekeyint prefix branching_bit then
if (thekeyint land (branching_bit :> int)) == 0
then branch ~prefix ~branching_bit ~tree0:(loop tree0) ~tree1
else branch ~prefix ~branching_bit ~tree0 ~tree1:(loop tree1)
else join thekeyint (leaf thekey value) (prefix :> int) t
in loop t
with Unmodified -> t
type ('map1,'map2) polysame_domain_for_all2 = { f: 'a 'b. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> bool } [@@unboxed]
let rec reflexive_same_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with
| _ when ta == tb -> true
| Empty, _ | _, Empty -> false
| Leaf _, Branch _ | Branch _, Leaf _ -> false
| Leaf{key=keya;value=valuea}, Leaf{key=keyb;value=valueb} ->
begin match Key.polyeq keya keyb with
| Diff -> false
| Eq -> f.f keya valuea valueb
end
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
pa == pb && ma == mb &&
reflexive_same_domain_for_all2 f ta0 tb0 &&
reflexive_same_domain_for_all2 f ta1 tb1
let rec nonreflexive_same_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with
| Empty, _ | _, Empty -> false
| Leaf _, Branch _ | Branch _, Leaf _ -> false
| Leaf{key=keya;value=valuea}, Leaf{key=keyb;value=valueb} ->
begin match Key.polyeq keya keyb with
| Diff -> false
| Eq -> f.f keya valuea valueb
end
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
pa == pb && ma == mb &&
nonreflexive_same_domain_for_all2 f ta0 tb0 &&
nonreflexive_same_domain_for_all2 f ta1 tb1
let rec reflexive_subset_domain_for_all2 f ta tb = match (NODE.view ta),(NODE.view tb) with
| _ when ta == tb -> true
| Empty, _ -> true
| _, Empty -> false
| Branch _, Leaf _ -> false
| Leaf {key=keya;value=valuea}, viewb ->
let searched = Key.to_int keya in
let rec search = function
| Leaf{key=keyb;value=valueb} ->
begin match Key.polyeq keya keyb with
| Diff -> false
| Eq -> f.f keya valuea valueb
end
| Branch{branching_bit;tree0;tree1;_} ->
if ((branching_bit :> int) land searched == 0)
then search (NODE.view tree0)
else search (NODE.view tree1)
| Empty -> false
in search viewb
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
(reflexive_subset_domain_for_all2 f ta0 tb0) &&
(reflexive_subset_domain_for_all2 f ta1 tb1)
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then reflexive_subset_domain_for_all2 f ta tb0
else reflexive_subset_domain_for_all2 f ta tb1
else false
type 'map polycompare =
{ f : 'a. 'a key -> ('a, 'map) value -> ('a, 'map) value -> int; } [@@unboxed]
let compare_aux : type a b m. m polycompare -> a key -> (a,m) value -> b key -> (b,m) value -> int -> int =
fun f ka va kb vb default ->
let cmp = Int.compare (Key.to_int ka) (Key.to_int kb) in
if cmp <> 0 then cmp else
match Key.polyeq ka kb with
| Eq -> let cmp = f.f ka va vb in
if cmp <> 0 then cmp else default
| Diff -> default
let rec reflexive_compare f ta tb = match (NODE.view ta),(NODE.view tb) with
| _ when ta == tb -> 0
| Empty, _ -> 1
| _, Empty -> -1
| Branch _, Leaf {key;value} ->
let KeyValue(k,v) = unsigned_min_binding ta in
compare_aux f k v key value 1
| Leaf {key;value}, Branch _ ->
let KeyValue(k,v) = unsigned_min_binding tb in
compare_aux f key value k v (-1)
| Leaf {key;value}, Leaf{key=keyb;value=valueb} ->
compare_aux f key value keyb valueb 0
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let cmp = reflexive_compare f ta0 tb0 in
if cmp <> 0 then cmp else
reflexive_compare f ta1 tb1
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then let cmp = reflexive_compare f ta tb0 in if cmp <> 0 then cmp else -1
else -1
else if branches_before pa ma pb mb
then if (mb :> int) land (pa :> int) == 0
then let cmp = reflexive_compare f ta0 tb in if cmp <> 0 then cmp else 1
else 1
else Int.compare (pa :> int) (pb :> int)
let rec disjoint ta tb =
if ta == tb then is_empty ta
else match NODE.view ta,NODE.view tb with
| Empty, _ | _, Empty -> true
| Leaf{key;_},_ -> not (mem key tb)
| _,Leaf{key;_} -> not (mem key ta)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then disjoint ta0 tb0 && disjoint ta1 tb1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then disjoint ta0 tb
else disjoint ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then disjoint ta tb0
else disjoint ta tb1
else true
type ('map1,'map2,'map3) polyunion = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t } [@@unboxed]
let rec idempotent_union f ta tb =
if ta == tb then ta
else
match NODE.view ta,NODE.view tb with
| Empty, _ -> tb
| _, Empty -> ta
| Leaf{key;value},_ -> insert_for_union ({f=fun ~key ~old ~value -> f.f key value old}) key value tb
| _,Leaf{key;value} -> insert_for_union ({f=fun ~key ~old ~value -> f.f key old value}) key value ta
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = idempotent_union f ta0 tb0 in
let tree1 = idempotent_union f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then branch ~prefix:pa ~branching_bit:ma ~tree0:(idempotent_union f ta0 tb) ~tree1:ta1
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(idempotent_union f ta1 tb)
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then branch ~prefix:pb ~branching_bit:mb ~tree0:(idempotent_union f ta tb0) ~tree1:tb1
else branch ~prefix:pb ~branching_bit:mb ~tree0:tb0 ~tree1:(idempotent_union f ta tb1)
else join (pa :> int) ta (pb :> int) tb
type ('map1,'map2,'map3) polyinter = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t } [@@unboxed]
let rec idempotent_inter f ta tb =
if ta == tb then ta
else match NODE.view ta,NODE.view tb with
| Empty, _ | _, Empty -> empty
| Leaf{key;value},_ ->
(try let res = find key tb in
if res == value then ta else
let newval = f.f key value res in
if newval == value then ta else
leaf key newval
with Not_found -> empty)
| _,Leaf{key;value} ->
(try let res = find key ta in
if res == value then tb else
let newval = f.f key res value in
if newval == value then tb else
leaf key newval
with Not_found -> empty)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = idempotent_inter f ta0 tb0 in
let tree1 = idempotent_inter f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then idempotent_inter f ta0 tb
else idempotent_inter f ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then idempotent_inter f ta tb0
else idempotent_inter f ta tb1
else empty
let rec nonidempotent_inter_no_share f ta tb =
match NODE.view ta,NODE.view tb with
| Empty, _ | _, Empty -> empty
| Leaf{key;value},_ ->
(try let res = find key tb in
leaf key (f.f key value res)
with Not_found -> empty)
| _,Leaf{key;value} ->
(try let res = find key ta in
leaf key (f.f key res value)
with Not_found -> empty)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = nonidempotent_inter_no_share f ta0 tb0 in
let tree1 = nonidempotent_inter_no_share f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then nonidempotent_inter_no_share f ta0 tb
else nonidempotent_inter_no_share f ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then nonidempotent_inter_no_share f ta tb0
else nonidempotent_inter_no_share f ta tb1
else empty
type ('map1,'map2,'map3) polyinterfilter = ('map1, 'map2, 'map3) polyupdate_multiple_inter = { f: 'a. 'a Key.t -> ('a,'map1) Value.t -> ('a,'map2) Value.t -> ('a,'map3) Value.t option } [@@unboxed]
let rec idempotent_inter_filter f ta tb =
if ta == tb then ta
else match NODE.view ta,NODE.view tb with
| Empty, _ | _, Empty -> empty
| Leaf{key;value},_ ->
(try let res = find key tb in
if res == value then ta else
match (f.f key value res) with
| Some v when v == value -> ta
| Some v -> leaf key v
| None -> empty
with Not_found -> empty)
| _,Leaf{key;value} ->
(try let res = find key ta in
if res == value then tb else
match f.f key res value with
| Some v when v == value -> tb
| Some v -> leaf key v
| None -> empty
with Not_found -> empty)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = idempotent_inter_filter f ta0 tb0 in
let tree1 = idempotent_inter_filter f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then idempotent_inter_filter f ta0 tb
else idempotent_inter_filter f ta1 tb
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then idempotent_inter_filter f ta tb0
else idempotent_inter_filter f ta tb1
else empty
type ('map1,'map2,'map3) polymerge = { f: 'a. 'a Key.t -> ('a,'map1) Value.t option -> ('a,'map2) Value.t option -> ('a,'map3) Value.t option } [@@unboxed]
let rec slow_merge: type mapa mapb mapc. (mapa,mapb,mapc) polymerge -> mapa NODE.t -> mapb NODE.t -> mapc NODE. t=
fun f ta tb ->
let upd_ta ta = filter_map_no_share {f=fun key value -> f.f key (Some value) None} ta in
let upd_tb tb = filter_map_no_share {f=fun key value -> f.f key None (Some value)} tb in
let oldf = f in
match NODE.view ta,NODE.view tb with
| Empty, _ -> upd_tb tb
| _, Empty -> upd_ta ta
| Leaf{key;value},_ ->
let found = ref false in
let f: type a. a Key.t -> (a,mapb) Value.t -> (a,mapc) Value.t option = fun curkey curvalue ->
match Key.polyeq curkey key with
| Eq -> found:= true; f.f key (Some value) (Some curvalue)
| Diff -> f.f curkey None (Some curvalue) in
let res = filter_map_no_share {f} tb in
if !found then res
else begin
match oldf.f key (Some value) None with
| None -> res
| Some value -> add key value res
end
| _, Leaf{key;value} ->
let found = ref false in
let f: type a. a Key.t -> (a,mapa) Value.t -> (a,mapc) Value.t option = fun curkey curvalue ->
match Key.polyeq curkey key with
| Eq -> found := true; f.f key (Some curvalue) (Some value)
| Diff -> f.f curkey (Some curvalue) None in
let res = filter_map_no_share {f} ta in
if !found then res
else begin
match oldf.f key None (Some value) with
| None -> res
| Some value -> add key value res
end
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
branch ~prefix:pa ~branching_bit:ma ~tree0:(slow_merge f ta0 tb0) ~tree1:(slow_merge f ta1 tb1)
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then branch ~prefix:pa ~branching_bit:ma ~tree0:(slow_merge f ta0 tb) ~tree1:(upd_ta ta1)
else branch ~prefix:pa ~branching_bit:ma ~tree0:(upd_ta ta0) ~tree1:(slow_merge f ta1 tb)
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then branch ~prefix:pb ~branching_bit:mb ~tree0:(slow_merge f ta tb0) ~tree1:(upd_tb tb1)
else branch ~prefix:pb ~branching_bit:mb ~tree0:(upd_tb tb0) ~tree1:(slow_merge f ta tb1)
else join (pa :> int) (upd_ta ta) (pb :> int) (upd_tb tb)
let rec symmetric_difference (f : (_,_) polydifference) ta tb =
if ta == tb then empty
else match NODE.view ta, NODE.view tb with
| Empty, _ -> tb
| _, Empty -> ta
| Leaf{key;value},_ ->
(try let res = find key tb in
if res == value then remove key tb else
match (f.f key value res) with
| Some v when v == res -> tb
| Some v -> add key v tb
| None -> remove key tb
with Not_found -> add key value tb)
| _,Leaf{key;value} ->
(try let res = find key ta in
if res == value then remove key ta else
match f.f key res value with
| Some v when v == res -> ta
| Some v -> add key v ta
| None -> remove key ta
with Not_found -> add key value ta)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let tree0 = symmetric_difference f ta0 tb0 in
let tree1 = symmetric_difference f ta1 tb1 in
branch ~prefix:pa ~branching_bit:ma ~tree0 ~tree1
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then branch ~prefix:pa ~branching_bit:ma ~tree0:(symmetric_difference f ta0 tb) ~tree1:ta1
else branch ~prefix:pa ~branching_bit:ma ~tree0:ta0 ~tree1:(symmetric_difference f ta1 tb)
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then branch ~prefix:pb ~branching_bit:mb ~tree0:(symmetric_difference f ta tb0) ~tree1:tb1
else branch ~prefix:pb ~branching_bit:mb ~tree0:tb0 ~tree1:(symmetric_difference f ta tb1)
else join (pa :> int) ta (pb :> int) tb
type 'map polyiter = { f: 'a. 'a Key.t -> ('a,'map) Value.t -> unit } [@@unboxed]
let rec iter f x = match NODE.view x with
| Empty -> ()
| Leaf{key;value} -> f.f key value
| Branch{tree0;tree1;_} -> iter f tree0; iter f tree1
type ('acc,'map) polyfold = { f: 'a. 'a Key.t -> ('a,'map) Value.t -> 'acc -> 'acc } [@@unboxed]
let rec fold f m acc = match NODE.view m with
| Empty -> acc
| Leaf{key;value} -> f.f key value acc
| Branch{tree0;tree1;_} ->
let acc = fold f tree0 acc in
fold f tree1 acc
type ('acc,'map) polyfold2 = { f: 'a. 'a key -> ('a,'map) value -> ('a,'map) value -> 'acc -> 'acc } [@@unboxed]
let rec fold_on_nonequal_inter f ta tb acc =
if ta == tb then acc
else match NODE.view ta,NODE.view tb with
| Empty, _ | _, Empty -> acc
| Leaf{key;value},_ ->
(try let valueb = find key tb in
if valueb == value then acc else
f.f key value valueb acc
with Not_found -> acc)
| _,Leaf{key;value} ->
(try let valuea = find key ta in
if valuea == value then acc else
f.f key valuea value acc
with Not_found -> acc)
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let acc = fold_on_nonequal_inter f ta0 tb0 acc in
let acc = fold_on_nonequal_inter f ta1 tb1 acc in
acc
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then fold_on_nonequal_inter f ta0 tb acc
else fold_on_nonequal_inter f ta1 tb acc
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then fold_on_nonequal_inter f ta tb0 acc
else fold_on_nonequal_inter f ta tb1 acc
else acc
type ('acc,'map) polyfold2_union =
{ f: 'a. 'a key -> ('a,'map) value option -> ('a,'map) value option ->
'acc -> 'acc } [@@unboxed]
let rec fold_on_nonequal_union:
'm 'acc. ('acc,'m) polyfold2_union -> 'm t -> 'm t -> 'acc -> 'acc =
fun (type m) f (ta:m t) (tb:m t) acc ->
if ta == tb then acc
else
let fleft:(_,_) polyfold =
{f=fun key value acc -> f.f key (Some value) None acc} in
let fright:(_,_)polyfold =
{f=fun key value acc -> f.f key None (Some value) acc} in
match NODE.view ta,NODE.view tb with
| Empty, _ -> fold fright tb acc
| _, Empty -> fold fleft ta acc
| Leaf{key;value},_ ->
let ida = Key.to_int key in
let g (type b) (keyb:b key) (valueb:(b,m) value) (acc,did_a) =
let default() = (f.f keyb None (Some valueb) acc,did_a) in
if did_a then default()
else
let idb = Key.to_int keyb in
if unsigned_lt idb ida then default()
else if unsigned_lt ida idb then
let acc = f.f key (Some value) None acc in
let acc = f.f keyb None (Some valueb) acc in
(acc,true)
else match Key.polyeq key keyb with
| Eq ->
if value == valueb then (acc,true)
else (f.f key (Some value) (Some valueb) acc,true)
| Diff ->
raise (Invalid_argument "Keys with same to_int value are not equal by polyeq")
in
let (acc,found) = fold{f=fun keyb valueb acc -> g keyb valueb acc} tb (acc,false) in
if found then acc
else f.f key (Some value) None acc
| _,Leaf{key;value} ->
let idb = Key.to_int key in
let g (type a) (keya: a key) (valuea:(a,m) value) (acc,did_b) =
let default() = (f.f keya (Some valuea) None acc,did_b) in
if did_b then default()
else
let ida = Key.to_int keya in
if unsigned_lt ida idb then default()
else if unsigned_lt idb ida then
let acc = f.f key None (Some value) acc in
let acc = f.f keya (Some valuea) None acc in
(acc,true)
else match Key.polyeq keya key with
| Eq ->
if valuea == value then (acc,true)
else (f.f keya (Some valuea) (Some value) acc,true)
| Diff ->
raise (Invalid_argument "Keys with same to_int value are not equal by polyeq")
in
let (acc,found) = fold{f=fun keya valuea acc -> g keya valuea acc} ta (acc,false) in
if found then acc
else f.f key None (Some value) acc
| Branch{prefix=pa;branching_bit=ma;tree0=ta0;tree1=ta1},
Branch{prefix=pb;branching_bit=mb;tree0=tb0;tree1=tb1} ->
if ma == mb && pa == pb
then
let acc = fold_on_nonequal_union f ta0 tb0 acc in
let acc = fold_on_nonequal_union f ta1 tb1 acc in
acc
else if branches_before pa ma pb mb
then if (ma :> int) land (pb :> int) == 0
then
let acc = fold_on_nonequal_union f ta0 tb acc in
let acc = fold fleft ta1 acc in
acc
else
let acc = fold fleft ta0 acc in
let acc = fold_on_nonequal_union f ta1 tb acc in
acc
else if branches_before pb mb pa ma
then if (mb :> int) land (pa :> int) == 0
then
let acc = fold_on_nonequal_union f ta tb0 acc in
let acc = fold fright tb1 acc in
acc
else
let acc = fold fright tb0 acc in
let acc = fold_on_nonequal_union f ta tb1 acc in
acc
else
if unsigned_lt (pa :> int) (pb :> int) then
let acc = fold fleft ta acc in
let acc = fold fright tb acc in
acc
else
let acc = fold fright tb acc in
let acc = fold fleft ta acc in
acc
type 'map polypredicate = { f: 'a. 'a key -> ('a,'map) value -> bool; } [@@unboxed]
let filter f m = filter_map {f = fun k v -> if f.f k v then Some v else None } m
let rec for_all f m = match NODE.view m with
| Empty -> true
| Leaf{key;value} -> f.f key value
| Branch{tree0; tree1; _ } -> for_all f tree0 && for_all f tree1
let rec to_seq m () = match NODE.view m with
| Empty -> Seq.Nil
| Leaf{key; value} -> Seq.Cons (KeyValue(key,value), Seq.empty)
| Branch{tree0; tree1; _} -> Seq.append (to_seq tree0) (to_seq tree1) ()
let rec to_rev_seq m () = match NODE.view m with
| Empty -> Seq.Nil
| Leaf{key; value} -> Seq.Cons (KeyValue(key,value), Seq.empty)
| Branch{tree0; tree1; _} -> Seq.append (to_rev_seq tree1) (to_rev_seq tree0) ()
let rec add_seq: type a. a key_value_pair Seq.t -> a t -> a t =
fun s m -> match s () with
| Seq.Nil -> m
| Seq.Cons(KeyValue(key,value), s) -> add_seq s (add key value m)
let of_seq s = add_seq s empty
let of_list l = of_seq (List.to_seq l)
let to_list m = List.of_seq (to_seq m)
end
module MakeCustomHeterogeneousSet
(Key:HETEROGENEOUS_KEY)
(Node:NODE with type 'a key = 'a Key.t and type ('a, 'b) value = unit)
: HETEROGENEOUS_SET with type 'a elt = 'a Key.t and type 'a BaseMap.t = 'a Node.t
= struct
module BaseMap = MakeCustomHeterogeneousMap(Key)(struct type ('a,'b) t = unit end)(Node)
include BaseMap
type t = unit BaseMap.t
type 'a elt = 'a key
type any_elt = Any : 'a elt -> any_elt
let [@specialise] add key map = BaseMap.add key () map
let singleton elt = singleton elt ()
let is_singleton set = match BaseMap.is_singleton set with
| None -> None
| Some(KeyValue(k,())) -> Some(Any(k))
let union =
let f:(unit,unit,unit) BaseMap.polyunion = {f=fun _ () () -> ()} in
fun [@specialise] sa sb -> BaseMap.idempotent_union f sa sb
let inter =
let f:(unit,unit,unit) BaseMap.polyinter = {f=fun _ () () -> ()} in
fun [@specialise] sa sb -> (BaseMap.idempotent_inter ) f sa sb
type polyiter = { f: 'a. 'a elt -> unit; } [@@unboxed]
let iter f set = BaseMap.iter {f=fun k () -> f.f k} set
type 'acc polyfold = { f: 'a. 'a key -> 'acc -> 'acc } [@@unboxed]
let fold f set acc =
let f: type a. a key -> unit -> 'acc -> 'acc = fun k () acc -> f.f k acc in
BaseMap.fold { f } set acc
let unsigned_min_elt t = let KeyValue(m, ()) = BaseMap.unsigned_min_binding t in Any m
let unsigned_max_elt t = let KeyValue(m, ()) = BaseMap.unsigned_max_binding t in Any m
let min_elt_inter s1 s2 = BaseMap.min_binding_inter s1 s2 |> Option.map (fun (KeyValueValue(m, (), ())) -> Any m)
let max_elt_inter s1 s2 = BaseMap.min_binding_inter s1 s2 |> Option.map (fun (KeyValueValue(m, (), ())) -> Any m)
let pop_unsigned_maximum t = Option.map (fun (KeyValue(m,()),t) -> Any m,t) (BaseMap.pop_unsigned_maximum t)
let pop_unsigned_minimum t = Option.map (fun (KeyValue(m,()),t) -> Any m,t) (BaseMap.pop_unsigned_minimum t)
type polypretty = { f: 'a. Format.formatter -> 'a key -> unit; } [@@unboxed]
let pretty ?pp_sep f fmt s = BaseMap.pretty ?pp_sep { f = fun fmt k () -> f.f fmt k} fmt s
let equal t1 t2 = BaseMap.reflexive_same_domain_for_all2 {f=fun _ _ _ -> true} t1 t2
let subset t1 t2 = BaseMap.reflexive_subset_domain_for_all2 {f=fun _ _ _ -> true} t1 t2
let diff = BaseMap.difference { f = fun _ () () -> None }
let split k m = let (l, present, r) = BaseMap.split k m in
(l, Option.is_some present, r)
type polypredicate = { f: 'a. 'a key -> bool; } [@@unboxed]
let filter f s = BaseMap.filter {f = fun k () -> f.f k } s
let for_all f s = BaseMap.for_all {f = fun k () -> f.f k} s
let to_seq m = Seq.map (fun (KeyValue(elt,())) -> Any elt) (BaseMap.to_seq m)
let to_rev_seq m = Seq.map (fun (KeyValue(elt,())) -> Any elt) (BaseMap.to_rev_seq m)
let add_seq s m = BaseMap.add_seq (Seq.map (fun (Any elt) -> KeyValue(elt,())) s) m
let of_seq s = add_seq s empty
let of_list l = of_seq (List.to_seq l)
let to_list s = List.of_seq (to_seq s)
let compare s1 s2 = BaseMap.reflexive_compare {f=fun _ () () -> 0} s1 s2
end
module MakeHeterogeneousMap(Key:HETEROGENEOUS_KEY)(Value:HETEROGENEOUS_VALUE) =
MakeCustomHeterogeneousMap(Key)(Value)(SimpleNode(Key)(Value))
module MakeHeterogeneousSet(Key:HETEROGENEOUS_KEY) =
MakeCustomHeterogeneousSet(Key)(SetNode(Key))
module MakeCustomMap
(Key:KEY)
(Value: VALUE)
(NODE:NODE with type 'a key = Key.t and type ('key,'map) value = ('key,'map Value.t) snd)
= struct
module NewKey = HeterogeneousKeyFromKey(Key)
module BaseMap = MakeCustomHeterogeneousMap
(NewKey)(struct type ('key,'map) t = ('key,'map Value.t) snd end)(NODE)
include BaseMap
type key = Key.t
type 'a value = 'a Value.t
let snd_opt = function
| None -> None
| Some x -> Some (Snd x)
let opt_snd = function
| None -> None
| Some (Snd x) -> Some x
let singleton k v = singleton k (Snd v)
let find k m = let Snd x = find k m in x
let find_opt k m = opt_snd (find_opt k m)
let insert k f m = insert k (fun v -> Snd (f (opt_snd v))) m
let update k f m = update k (fun v -> snd_opt (f (opt_snd v))) m
let add k v m = add k (Snd v) m
let split x m = let (l,m,r) = split x m in (l, opt_snd m, r)
let unsigned_min_binding m = let KeyValue(key,Snd value) = BaseMap.unsigned_min_binding m in key,value
let unsigned_max_binding m = let KeyValue(key,Snd value) = BaseMap.unsigned_max_binding m in key,value
let min_binding_inter m1 m2 = BaseMap.min_binding_inter m1 m2 |> Option.map (fun (KeyValueValue(k,Snd v1,Snd v2)) -> (k,v1,v2))
let max_binding_inter m1 m2 = BaseMap.max_binding_inter m1 m2 |> Option.map (fun (KeyValueValue(k,Snd v1,Snd v2)) -> (k,v1,v2))
let pop_unsigned_minimum m =
match BaseMap.pop_unsigned_minimum m with
| None -> None
| Some(KeyValue(key,Snd value),m) -> Some(key,value,m)
let pop_unsigned_maximum m =
match BaseMap.pop_unsigned_maximum m with
| None -> None
| Some(KeyValue(key,Snd value),m) -> Some(key,value,m)
let is_singleton m = match BaseMap.is_singleton m with
| None -> None
| Some(KeyValue(k,Snd v)) -> Some(k,v)
let filter (f: key -> 'a value -> bool) m = BaseMap.filter {f = fun k (Snd v) -> f k v} m
let map f a = BaseMap.map {f = fun (Snd v) -> Snd (f v)} a
let map_no_share f a = BaseMap.map_no_share {f = fun (Snd v) -> Snd (f v)} a
let mapi (f : key -> 'a value -> 'a value) a = BaseMap.mapi {f = fun k (Snd v) -> Snd (f k v)} a
let mapi_no_share (f : key -> 'a value -> 'b value) a = BaseMap.mapi_no_share {f = fun k (Snd v) -> Snd (f k v)} a
let filter_map (f: key -> 'a value -> 'a value option) a =
BaseMap.filter_map {f=fun k (Snd v) -> snd_opt (f k v) } a
let filter_map_no_share (f: key -> 'a value -> 'b value option) a =
BaseMap.filter_map_no_share {f=fun k (Snd v) -> snd_opt (f k v) } a
let idempotent_union (f: key -> 'a value -> 'a value -> 'a value) a b =
BaseMap.idempotent_union {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b
let idempotent_inter (f: key -> 'a value -> 'a value -> 'a value) a b =
BaseMap.idempotent_inter {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b
let nonidempotent_inter_no_share (f: key -> 'a value -> 'b value -> 'c value) a b =
BaseMap.nonidempotent_inter_no_share {f=fun k (Snd v1) (Snd v2) -> Snd (f k v1 v2)} a b
let idempotent_inter_filter (f: key -> 'a value -> 'a value -> 'a value option) a b =
BaseMap.idempotent_inter_filter {f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2)} a b
let reflexive_same_domain_for_all2 (f: key -> 'a value -> 'a value -> bool) a b =
BaseMap.reflexive_same_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b
let nonreflexive_same_domain_for_all2 (f: key -> 'a value -> 'b value -> bool) a b =
BaseMap.nonreflexive_same_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b
let reflexive_subset_domain_for_all2 (f: key -> 'a value -> 'a value -> bool) a b =
BaseMap.reflexive_subset_domain_for_all2 {f=fun k (Snd v1) (Snd v2) -> f k v1 v2} a b
let slow_merge (f : key -> 'a value option -> 'b value option -> 'c value option) a b = BaseMap.slow_merge {f=fun k v1 v2 -> snd_opt (f k (opt_snd v1) (opt_snd v2))} a b
let symmetric_difference (f: key -> 'a value -> 'a value -> 'a value option) a b = BaseMap.symmetric_difference {f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2)} a b
let difference (f: key -> 'a value -> 'b value -> 'a value option) a b = BaseMap.difference { f=fun k (Snd v1) (Snd v2) -> snd_opt (f k v1 v2) } a b
let iter (f: key -> 'a value -> unit) a = BaseMap.iter {f=fun k (Snd v) -> f k v} a
let fold (f: key -> 'a value -> 'acc -> 'acc) m acc = BaseMap.fold {f=fun k (Snd v) acc -> f k v acc} m acc
let fold_on_nonequal_inter (f: key -> 'a value -> 'a value -> 'acc -> 'acc) ma mb acc =
let f k (Snd va) (Snd vb) acc = f k va vb acc in
BaseMap.fold_on_nonequal_inter {f} ma mb acc
let fold_on_nonequal_union
(f: key -> 'a value option -> 'a value option -> 'acc -> 'acc) ma mb acc =
let f k va vb acc =
let va = Option.map (fun (Snd v) -> v) va in
let vb = Option.map (fun (Snd v) -> v) vb in
f k va vb acc in
BaseMap.fold_on_nonequal_union {f} ma mb acc
let pretty ?pp_sep (f: Format.formatter -> key -> 'a value -> unit) fmt m =
BaseMap.pretty ?pp_sep {f=fun fmt k (Snd v) -> f fmt k v} fmt m
let for_all (f : key -> 'a value -> bool) m = BaseMap.for_all {f = fun k (Snd v) -> f k v} m
module WithForeign(Map2 : NODE_WITH_FIND with type _ key = key) = struct
module BaseForeign = BaseMap.WithForeign(Map2)
type ('b,'c) polyfilter_map_foreign = { f: 'a. key -> ('a,'b) Map2.value -> 'c value option } [@@unboxed]
let filter_map_no_share f m2 =
BaseForeign.filter_map_no_share { f=fun k v-> snd_opt (f.f k v)} m2
type ('value,'map2) polyinter_foreign =
{ f: 'a. 'a Map2.key -> 'value value -> ('a, 'map2) Map2.value -> 'value value } [@@unboxed]
let nonidempotent_inter f m1 m2 =
BaseForeign.nonidempotent_inter {f = fun k (Snd v) v2 -> Snd (f.f k v v2)} m1 m2
type ('map1,'map2) polyupdate_multiple = { f: 'a. key -> 'map1 value option -> ('a,'map2) Map2.value -> 'map1 value option } [@@unboxed]
let update_multiple_from_foreign m2 f m =
BaseForeign.update_multiple_from_foreign m2 {f = fun k v1 v2 -> snd_opt (f.f k (opt_snd v1) v2)} m
type ('map1,'map2) polyupdate_multiple_inter = { f: 'a. key -> 'map1 value -> ('a,'map2) Map2.value -> 'map1 value option } [@@unboxed]
let update_multiple_from_inter_with_foreign m2 f m =
BaseForeign.update_multiple_from_inter_with_foreign m2 {f = fun k (Snd v1) v2 -> snd_opt (f.f k v1 v2)} m
type ('map1, 'map2) polydifference = ('map1,'map2) polyupdate_multiple_inter
let difference f m1 m2 = BaseForeign.difference {f=fun k (Snd v) v2 -> snd_opt (f.f k v v2) } m1 m2
end
let to_seq m = Seq.map (fun (KeyValue(key,Snd value)) -> (key,value)) (BaseMap.to_seq m)
let to_rev_seq m = Seq.map (fun (KeyValue(key,Snd value)) -> (key,value)) (BaseMap.to_rev_seq m)
let add_seq s m = BaseMap.add_seq (Seq.map (fun (key,value) -> KeyValue(key,Snd value)) s) m
let of_seq s = add_seq s empty
let of_list l = of_seq (List.to_seq l)
let to_list s = List.of_seq (to_seq s)
let reflexive_equal f m1 m2 = reflexive_same_domain_for_all2 (fun _ -> f) m1 m2
let reflexive_compare f m1 m2 = reflexive_compare {f=fun _ (Snd v1) (Snd v2) -> f v1 v2} m1 m2
end
module MakeMap(Key: KEY) = struct
module NKey = struct type 'a t = Key.t end
module Node = SimpleNode(NKey)(WrappedHomogeneousValue)
include MakeCustomMap(Key)(Value)(Node)
end
module MakeCustomSet
(Key: KEY)
(Node:NODE with type 'a key = Key.t and type ('key,'map) value = unit)
: SET with type elt = Key.t and type 'a BaseMap.t = 'a Node.t = struct
module HKey = HeterogeneousKeyFromKey(Key)
module S = MakeCustomHeterogeneousSet(HKey)(Node)
include S
type key = Key.t
type elt = key
let iter (f: elt -> unit) set = S.iter {f} set
let fold (f: key -> 'acc -> 'acc) set acc = S.fold {f} set acc
let filter (f: key -> bool) set = S.filter {f} set
let for_all (f: key -> bool) set = S.for_all {f} set
let pretty ?pp_sep (f : Format.formatter -> key -> unit) fmt s =
S.pretty ?pp_sep {f} fmt s
let is_singleton m = match BaseMap.is_singleton m with
| None -> None
| Some(KeyValue(k,())) -> Some k
let unsigned_min_elt t = let Any x = unsigned_min_elt t in x
let unsigned_max_elt t = let Any x = unsigned_max_elt t in x
let pop_unsigned_minimum t = Option.map (fun (Any x, t) -> (x,t)) (pop_unsigned_minimum t)
let pop_unsigned_maximum t = Option.map (fun (Any x, t) -> (x,t)) (pop_unsigned_maximum t)
let min_elt_inter t1 t2 = Option.map (fun (Any x) -> x) (min_elt_inter t1 t2)
let max_elt_inter t1 t2 = Option.map (fun (Any x) -> x) (max_elt_inter t1 t2)
let to_seq m = Seq.map (fun (BaseMap.KeyValue(elt,())) -> elt) (BaseMap.to_seq m)
let to_rev_seq m = Seq.map (fun (BaseMap.KeyValue(elt,())) -> elt) (BaseMap.to_rev_seq m)
let add_seq s m = BaseMap.add_seq (Seq.map (fun (elt) -> BaseMap.KeyValue(elt,())) s) m
let of_seq s = add_seq s empty
let of_list l = of_seq (List.to_seq l)
let to_list s = List.of_seq (to_seq s)
end
module MakeSet(Key: KEY) = MakeCustomSet(Key)(SetNode(HeterogeneousKeyFromKey(Key)))
module MakeHashconsedHeterogeneousMap(Key:HETEROGENEOUS_KEY)(Value:HETEROGENEOUS_HASHED_VALUE)() = struct
module Node = HashconsedNode(Key)(Value)()
include MakeCustomHeterogeneousMap(Key)(Value)(Node)
let equal = Node.equal
let compare = Node.compare
let to_int = Node.to_int
end
module MakeHashconsedHeterogeneousSet(Key:HETEROGENEOUS_KEY)() = struct
module Node = HashconsedSetNode(Key)()
include MakeCustomHeterogeneousSet(Key)(Node)
let equal = Node.equal
let compare = Node.compare
let to_int = Node.to_int
end
module MakeHashconsedSet(Key : KEY)() = struct
module Node = HashconsedSetNode(HeterogeneousKeyFromKey(Key))()
include MakeCustomSet(Key)(Node)
let equal = Node.equal
let compare = Node.compare
let to_int = Node.to_int
end
module MakeHashconsedMap(Key: KEY)(Value: HASHED_VALUE)() = struct
module HetValue = HeterogeneousHashedValueFromHashedValue(Value)
module Node = HashconsedNode(HeterogeneousKeyFromKey(Key))(HetValue)()
include MakeCustomMap(Key)(Value)(Node)
let equal = Node.equal
let compare = Node.compare
let to_int = Node.to_int
end