package ocamlgraph

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file rand.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* $Id: rand.ml,v 1.18 2005-03-31 13:32:51 filliatr Exp $ *)

module type S = sig
  type graph
  type vertex
  type edge_label
  val graph : ?loops:bool -> v:int -> e:int -> unit -> graph
  val labeled :
    (vertex -> vertex -> edge_label) ->
    ?loops:bool -> v:int -> e:int -> unit -> graph
  (* DEBUG *)
  val random_few_edges : loops:bool -> v:int -> e:int -> graph
  val random_many_edges : loops:bool -> v:int -> e:int -> graph
  val gnp : ?loops:bool -> v:int -> prob:float -> unit -> graph
  val gnp_labeled :
    (vertex -> vertex -> edge_label) ->
    ?loops:bool -> v:int -> prob:float -> unit -> graph
end

module Make(B : Builder.INT) = struct

  open B
  type graph = G.t
  type vertex = G.V.t
  type edge_label = G.E.label

  open Int64

  let max_edges ~loops ~v ~e =
    if v <= 0 || e < 0 then invalid_arg "random";
    let v64 = of_int v in
    let max_e = mul v64 (pred v64) in
    let max_e = if G.is_directed then max_e else div max_e (of_int 2) in
    let max_e = if loops then add max_e v64 else max_e in
    if of_int e > max_e then invalid_arg "random: too many edges";
    max_e

  let fold_for i0 i1 f =
    let rec loop i v = if i > i1 then v else loop (i + 1) (f v i) in
    loop i0

  (* naive implementation: we randomly chose edges up to [e] different edges *)
  let random_few_edges add_edge ~loops ~v ~e =
    let _ = max_edges ~loops ~v ~e in
    let a = Array.init v G.V.create in
    let g = Array.fold_left add_vertex (empty ()) a in
    let rec random_edge g =
      let i = Random.int v in
      let j = Random.int v in
      if (i = j && not loops) || G.mem_edge g a.(i) a.(j) then
        random_edge g
      else
        add_edge g a.(i) a.(j)
    in
    fold_for 1 e (fun g _ -> random_edge g) g

  (* other implementation in O(v * v); faster when [e] is large *)
  let random_many_edges add_edge ~loops ~v ~e =
    let v64 = of_int v in
    let max_e = max_edges ~loops ~v ~e in
    let a = Array.init v G.V.create in
    let g = Array.fold_left add_vertex (empty ()) a in
    let rec add_edges i j max nb g =
      assert
        (max >= 0L &&
         max_e =
         add max (add (mul (of_int i) v64)
                    (of_int
                       (j -
                        (match G.is_directed, loops with
                         | true, true -> 0
                         | true, false -> if j > i then i + 1 else i
                         | false, true -> i * (i - 1) / 2 + if j > i then i else j
                         | false, false -> i*(i+1)/2 + if j > i then i+1 else j)))));
      if nb = 0 then
        g
      else
        let add_edges =
          let i, j = if j = v - 1 then i + 1, 0 else i, j + 1 in
          add_edges i j
        in
        if (i = j && not loops) || (not G.is_directed && i > j) then
          add_edges max nb g
        else
          let add_edges = add_edges (pred max) in
          if Random.int64 max < of_int nb then
            add_edges (nb - 1) (add_edge g a.(i) a.(j))
          else
            add_edges nb g
    in
    add_edges 0 0 max_e e g

  let random ~loops ~v ~e =
    let r = float e /. (float v *. float v) in
    (if r < 0.4 then random_few_edges else random_many_edges) ~loops ~v ~e

  let graph ?(loops=false) ~v ~e () = random B.add_edge ~loops ~v ~e

  let labeled f ?(loops=false) ~v ~e () =
    random
      (fun g v1 v2 -> B.add_edge_e g (G.E.create v1 (f v1 v2) v2))
      ~loops ~v ~e

  (* DEBUG *)
  let random_few_edges = random_few_edges B.add_edge
  let random_many_edges = random_many_edges B.add_edge

  (** G(n,p) graphs
      See https://en.wikipedia.org/wiki/Random_graph *)


  let gnp_generic add_edge ?(loops=false) ~v ~prob () =
    if not (0.0 <= prob && prob <= 1.0) then invalid_arg "gnp";
    let vertices = Array.init v (fun i -> B.G.V.create i) in
    let g = Array.fold_left B.add_vertex (B.empty ()) vertices in
    let g = ref g in
    for i = 0 to v-1 do
      for j = 0 to (if G.is_directed then v-1 else i) do
        if (loops || j <> i) && (prob = 1.0 || Random.float 1.0 < prob) then
          g := add_edge !g vertices.(i) vertices.(j)
      done
    done;
    !g

  let gnp ?(loops=false) ~v ~prob () =
    gnp_generic B.add_edge ~loops ~v ~prob ()

  let gnp_labeled f ?(loops=false) ~v ~prob () =
    gnp_generic (fun g v1 v2 -> B.add_edge_e g (G.E.create v1 (f v1 v2) v2))
      ~loops ~v ~prob ()

end

module P (G : Sig.P with type V.label = int) = Make(Builder.P(G))

module I (G : Sig.I with type V.label = int) = Make(Builder.I(G))


(** Random planar graphs *)

module Planar = struct

  module type S = sig
    type graph
    val graph :
      ?loops:bool -> xrange:int*int -> yrange:int*int ->
      prob:float -> int -> graph
  end

  module Make
      (B : Builder.S with type G.V.label = int * int and type G.E.label = int) =
  struct

    type graph = B.G.t
    open B.G

    module Point = struct
      type point = V.t
      let ccw v1 v2 v3 =
        Delaunay.IntPoints.ccw (V.label v1) (V.label v2) (V.label v3)
      let in_circle v1 v2 v3 v4 =
        Delaunay.IntPoints.in_circle
          (V.label v1) (V.label v2) (V.label v3) (V.label v4)
      let distance v1 v2 =
        let x1,y1 = V.label v1 in
        let x2,y2 = V.label v2 in
        let sqr x = let x = float x in x *. x in
        truncate (sqrt (sqr (x1 - x2) +. sqr (y1 - y2)))
    end

    module Triangulation = Delaunay.Make(Point)

    let graph ?(loops=false) ~xrange:(xmin,xmax) ~yrange:(ymin,ymax) ~prob v =
      if not (0.0 <= prob && prob <= 1.0) then invalid_arg "Planar.graph";
      if v < 2 then invalid_arg "Planar.graph";
      (* [v] random points and their Delaunay triangulation *)
      let random_point () =
        xmin + Random.int (1 + xmax - xmin),
        ymin + Random.int (1 + ymax - ymin)
      in
      let vertices = Array.init v (fun _ -> V.create (random_point ())) in
      let t = Triangulation.triangulate vertices in
      (* a graph with [v] vertices and random loops if any *)
      let g = Array.fold_left B.add_vertex (B.empty ()) vertices in
      let g =
        if loops then
          Array.fold_left
            (fun g v ->
               if Random.float 1.0 < prob then
                 g
               else
                 let e = E.create v 0 v in B.add_edge_e g e)
            g vertices
        else
          g
      in
      (* we keep some edges from the triangulation according to [prob] *)
      let add_edge v1 v2 g =
        if Random.float 1.0 < prob then
          g
        else
          let e = E.create v1 (Point.distance v1 v2) v2 in B.add_edge_e g e
      in
      Triangulation.fold
        (fun v1 v2 g ->
           let g = add_edge v1 v2 g in
           if is_directed then add_edge v2 v1 g else g)
        t g

  end

  module P (G : Sig.P with type V.label = int * int and type E.label = int) =
    Make(Builder.P(G))

  module I (G : Sig.I with type V.label = int * int and type E.label = int) =
    Make(Builder.I(G))

end
(*
  Local Variables:
  compile-command: "make -C .. src/rand.cmo"
  End:

*)