package cachet
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file cachet.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
type bigstring = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t external swap16 : int -> int = "%bswap16" external swap32 : int32 -> int32 = "%bswap_int32" external swap64 : int64 -> int64 = "%bswap_int64" external get_uint8 : bigstring -> int -> int = "%caml_ba_ref_1" external set_uint8 : bigstring -> int -> int -> unit = "%caml_ba_set_1" external get_int32_ne : bigstring -> int -> int32 = "%caml_bigstring_get32" external set_int32_ne : bigstring -> int -> int32 -> unit = "%caml_bigstring_set32" let memcpy src ~src_off dst ~dst_off ~len = if len < 0 || src_off < 0 || src_off > Bigarray.Array1.dim src - len || dst_off < 0 || dst_off > Bigarray.Array1.dim dst - len then invalid_arg "memcpy"; let len0 = len land 3 in let len1 = len lsr 2 in for i = 0 to len1 - 1 do let i = i * 4 in let v = get_int32_ne src (src_off + i) in set_int32_ne dst (dst_off + i) v done; for i = 0 to len0 - 1 do let i = (len1 * 4) + i in let v = get_uint8 src (src_off + i) in set_uint8 dst (dst_off + i) v done let memmove src ~src_off dst ~dst_off ~len = let src = Bigarray.Array1.sub src src_off len in let dst = Bigarray.Array1.sub dst dst_off len in Bigarray.Array1.blit src dst let invalid_argf fmt = Format.kasprintf invalid_arg fmt module Bstr = struct type t = bigstring let of_bigstring x = x let empty = Bigarray.Array1.create Bigarray.char Bigarray.c_layout 0 let length = Bigarray.Array1.dim external get : t -> int -> char = "%caml_ba_ref_1" external get_uint8 : t -> int -> int = "%caml_ba_ref_1" external get_uint16_ne : t -> int -> int = "%caml_bigstring_get16" external get_int32_ne : t -> int -> int32 = "%caml_bigstring_get32" external get_int64_ne : t -> int -> int64 = "%caml_bigstring_get64" let get_int8 bstr i = (get_uint8 bstr i lsl (Sys.int_size - 8)) asr (Sys.int_size - 8) let get_uint16_le bstr i = if Sys.big_endian then swap16 (get_uint16_ne bstr i) else get_uint16_ne bstr i let get_uint16_be bstr i = if not Sys.big_endian then swap16 (get_uint16_ne bstr i) else get_uint16_ne bstr i let get_int16_ne bstr i = (get_uint16_ne bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16) let get_int16_le bstr i = (get_uint16_le bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16) let get_int16_be bstr i = (get_uint16_be bstr i lsl (Sys.int_size - 16)) asr (Sys.int_size - 16) let get_int32_le bstr i = if Sys.big_endian then swap32 (get_int32_ne bstr i) else get_int32_ne bstr i let get_int32_be bstr i = if not Sys.big_endian then swap32 (get_int32_ne bstr i) else get_int32_ne bstr i let get_int64_le bstr i = if Sys.big_endian then swap64 (get_int64_ne bstr i) else get_int64_ne bstr i let get_int64_be bstr i = if not Sys.big_endian then swap64 (get_int64_ne bstr i) else get_int64_ne bstr i let sub t ~off ~len = Bigarray.Array1.sub t off len let blit_to_bytes bstr ~src_off dst ~dst_off ~len = if len < 0 || src_off < 0 || src_off > length bstr - len || dst_off < 0 || dst_off > Bytes.length dst - len then invalid_arg "Cachet.Bstr.blit_to_bytes"; let len0 = len land 3 in let len1 = len lsr 2 in for i = 0 to len1 - 1 do let i = i * 4 in let v = get_int32_ne bstr (src_off + i) in Bytes.set_int32_ne dst (dst_off + i) v done; for i = 0 to len0 - 1 do let i = (len1 * 4) + i in let v = get_uint8 bstr (src_off + i) in Bytes.set_uint8 dst (dst_off + i) v done let sub_string bstr ~off ~len = let buf = Bytes.create len in blit_to_bytes bstr ~src_off:off buf ~dst_off:0 ~len; Bytes.unsafe_to_string buf let to_string bstr = sub_string bstr ~off:0 ~len:(length bstr) let is_empty bstr = length bstr == 0 let is_prefix ~affix bstr = let len_affix = String.length affix in let len_bstr = length bstr in if len_affix > len_bstr then false else let max_idx_affix = len_affix - 1 in let rec go idx = if idx > max_idx_affix then true else if affix.[idx] != bstr.{idx} then false else go (succ idx) in go 0 let is_infix ~affix bstr = let len_affix = String.length affix in let len_bstr = length bstr in if len_affix > len_bstr then false else let max_idx_affix = len_affix - 1 in let max_idx_bstr = len_bstr - len_affix in let rec go idx k = if idx > max_idx_bstr then false else if k > max_idx_affix then true else if k > 0 then if affix.[k] == bstr.{idx + k} then go idx (succ k) else go (succ idx) 0 else if affix.[0] = bstr.{idx} then go idx 1 else go (succ idx) 0 in go 0 0 let is_suffix ~affix bstr = let max_idx_affix = String.length affix - 1 in let max_idx_bstr = length bstr - 1 in if max_idx_affix > max_idx_bstr then false else let rec go idx = if idx > max_idx_affix then true else if affix.[max_idx_affix - idx] != bstr.{max_idx_bstr - idx} then false else go (succ idx) in go 0 exception Break let for_all sat bstr = try for idx = 0 to length bstr - 1 do if sat bstr.{idx} == false then raise_notrace Break done; true with Break -> false let exists sat bstr = try for idx = 0 to length bstr - 1 do if sat bstr.{idx} then raise_notrace Break done; false with Break -> true let equal a b = if length a == length b then try let len = length a in let len0 = len land 3 in let len1 = len lsr 2 in for i = 0 to len1 - 1 do let i = i * 4 in if get_int32_ne a i <> get_int32_ne b i then raise_notrace Break done; for i = 0 to len0 - 1 do let i = (len1 * 4) + i in if get_uint8 a i != get_uint8 b i then raise_notrace Break done; true with Break -> false else false let with_range ?(first = 0) ?(len = max_int) bstr = if len < 0 then invalid_arg "Cachet.Bstr.with_range"; if len == 0 then empty else let bstr_len = length bstr in let max_idx = bstr_len - 1 in let last = match len with | len when len = max_int -> max_idx | len -> let last = first + len - 1 in if last > max_idx then max_idx else last in let first = if first < 0 then 0 else first in if first = 0 && last = max_idx then bstr else sub bstr ~off:first ~len:(last + 1 - first) let with_index_range ?(first = 0) ?last bstr = let bstr_len = length bstr in let max_idx = bstr_len - 1 in let last = match last with | None -> max_idx | Some last -> if last > max_idx then max_idx else last in let first = if first < 0 then 0 else first in if first > max_idx || last < 0 || first > last then empty else if first == 0 && last = max_idx then bstr else sub bstr ~off:first ~len:(last + 1 - first) let is_white chr = chr == ' ' let trim ?(drop = is_white) bstr = let len = length bstr in if len == 0 then bstr else let max_idx = len - 1 in let rec left_pos idx = if idx > max_idx then len else if drop bstr.{idx} then left_pos (succ idx) else idx in let rec right_pos idx = if idx < 0 then 0 else if drop bstr.{idx} then right_pos (pred idx) else succ idx in let left = left_pos 0 in if left = len then empty else let right = right_pos max_idx in if left == 0 && right == len then bstr else sub bstr ~off:left ~len:(right - left) let fspan ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.fspan"; if max < 0 then invalid_arg "Cachet.Bstr.fspan"; if min > max || max == 0 then (empty, bstr) else let len = length bstr in let max_idx = len - 1 in let max_idx = let k = max - 1 in if k > max_idx then max_idx else k in let need_idx = min in let rec go idx = if idx <= max_idx && sat bstr.{idx} then go (succ idx) else if idx < need_idx || idx == 0 then (empty, bstr) else if idx == len then (bstr, empty) else (sub bstr ~off:0 ~len:idx, sub bstr ~off:idx ~len:(len - idx)) in go 0 let rspan ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.rspan"; if max < 0 then invalid_arg "Cachet.Bstr.rspan"; if min > max || max == 0 then (bstr, empty) else let len = length bstr in let max_idx = len - 1 in let min_idx = let k = len - max in if k < 0 then 0 else k in let need_idx = max_idx - min in let rec go idx = if idx >= min_idx && sat bstr.{idx} then go (pred idx) else if idx > need_idx || idx == max_idx then (bstr, empty) else if idx == -1 then (empty, bstr) else let cut = idx + 1 in (sub bstr ~off:0 ~len:cut, sub bstr ~off:cut ~len:(len - cut)) in go 0 let span ?(rev = false) ?min ?max ?sat bstr = match rev with | true -> rspan ?min ?max ?sat bstr | false -> fspan ?min ?max ?sat bstr let ftake ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.ftake"; if max < 0 then invalid_arg "Cachet.Bstr.ftake"; if min > max || max == 0 then empty else let len = length bstr in let max_idx = len - 1 in let max_idx = let k = max - 1 in if k > max_idx then max_idx else k in let need_idx = min in let rec go idx = if idx <= max_idx && sat bstr.{idx} then go (succ idx) else if idx < need_idx || idx == 0 then empty else if idx == len then bstr else sub bstr ~off:0 ~len:idx in go 0 let rtake ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.rtake"; if max < 0 then invalid_arg "Cachet.Bstr.rtake"; if min > max || max == 0 then empty else let len = length bstr in let max_idx = len - 1 in let min_idx = let k = len - max in if k < 0 then 0 else k in let need_idx = max_idx - min in let rec go idx = if idx >= min_idx && sat bstr.{idx} then go (pred idx) else if idx > need_idx || idx == max_idx then empty else if idx == -1 then bstr else let cut = idx + 1 in sub bstr ~off:cut ~len:(len - cut) in go 0 let take ?(rev = false) ?min ?max ?sat bstr = match rev with | true -> rtake ?min ?max ?sat bstr | false -> ftake ?min ?max ?sat bstr let fdrop ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.fspan"; if max < 0 then invalid_arg "Cachet.Bstr.fspan"; if min > max || max == 0 then bstr else let len = length bstr in let max_idx = len - 1 in let max_idx = let k = max - 1 in if k > max_idx then max_idx else k in let need_idx = min in let rec go idx = if idx <= max_idx && sat bstr.{idx} then go (succ idx) else if idx < need_idx || idx == 0 then bstr else if idx == len then bstr else sub bstr ~off:idx ~len:(len - idx) in go 0 let rdrop ?(min = 0) ?(max = max_int) ?(sat = Fun.const true) bstr = if min < 0 then invalid_arg "Cachet.Bstr.rspan"; if max < 0 then invalid_arg "Cachet.Bstr.rspan"; if min > max || max == 0 then bstr else let len = length bstr in let max_idx = len - 1 in let min_idx = let k = len - max in if k < 0 then 0 else k in let need_idx = max_idx - min in let rec go idx = if idx >= min_idx && sat bstr.{idx} then go (pred idx) else if idx > need_idx || idx == max_idx then bstr else if idx == -1 then empty else let cut = idx + 1 in sub bstr ~off:0 ~len:cut in go 0 let drop ?(rev = false) ?min ?max ?sat bstr = match rev with | true -> rdrop ?min ?max ?sat bstr | false -> fdrop ?min ?max ?sat bstr let shift bstr off = if off > length bstr then invalid_arg "Cachet.Bstr.shift"; let len = length bstr - off in Bigarray.Array1.sub bstr off len end external hash : (int32[@unboxed]) -> int -> (int32[@unboxed]) = "cachet_hash_mix_intnat" "caml_hash_mix_intnat" [@@noalloc] let hash h d = Int32.to_int (hash h d) type slice = { offset: int; length: int; payload: bigstring } let pp_slice ppf { offset; length; _ } = Format.fprintf ppf "{ @[<hov>offset= %x;@ length= %d;@] }" offset length (* Counter Trailing Zero *) let unsafe_ctz n = let t = ref 1 in let r = ref 0 in while n land !t = 0 do t := !t lsl 1; incr r done; !r let bstr_of_slice ?(logical_address = 0) { offset; length; payload } = if logical_address < 0 then invalid_arg "Cachet.bstr_of_slice"; if logical_address == 0 || logical_address == offset then payload else if logical_address > offset + length then invalid_arg "Cachet.bstr_of_slice" else let pagesize = unsafe_ctz offset in let off = logical_address land ((pagesize lsl 1) - 1) in let len = length - off in Bstr.sub payload ~off ~len type metrics = { mutable cache_hit: int; mutable cache_miss: int } let metrics () = { cache_hit= 0; cache_miss= 0 } type 'fd t = { arr: slice option array ; fd: 'fd ; map: 'fd map ; pagesize: int ; cachesize: int ; metrics: metrics } and 'fd map = 'fd -> pos:int -> int -> bigstring let fd { fd; _ } = fd let pagesize { pagesize; _ } = 1 lsl pagesize let copy t = { arr= Array.make (1 lsl t.cachesize) None ; fd= t.fd ; map= t.map ; pagesize= t.pagesize ; cachesize= t.cachesize ; metrics= metrics () } (* XXX(dinosaure): power of two. *) let pot x = x land (x - 1) == 0 && x != 0 let make ?(cachesize = 1 lsl 10) ?(pagesize = 1 lsl 12) ~map fd = if pot cachesize = false || pot pagesize = false then invalid_arg "Chat.make: cachesize or pagesize must be a power of two"; let arr = Array.make cachesize None in let pagesize = unsafe_ctz pagesize in let cachesize = unsafe_ctz cachesize in let metrics = metrics () in { arr; fd; map; pagesize; cachesize; metrics } let load t logical_address = let page = logical_address lsr t.pagesize in let payload = t.map t.fd ~pos:(page lsl t.pagesize) (1 lsl t.pagesize) in let length = Bigarray.Array1.dim payload in let slice = { offset= page lsl t.pagesize; length; payload } in let hash = hash 0l slice.offset land ((1 lsl t.cachesize) - 1) in t.arr.(hash) <- Some slice; slice let none : slice option = None let cache_miss t = t.metrics.cache_miss let cache_hit t = t.metrics.cache_hit let map ({ fd; map; _ } as t) ~pos:logical_address logical_len = let page = logical_address lsr t.pagesize in let pos = page lsl t.pagesize in (* round-down *) let rem = logical_address - pos in let len = rem + logical_len in let len = (* round-up *) if ((1 lsl t.pagesize) - 1) land len != 0 then (len + (1 lsl t.pagesize)) land lnot ((1 lsl t.pagesize) - 1) else len in let off = logical_address land ((1 lsl t.pagesize) - 1) in if len <= 1 lsl t.pagesize then begin let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in match t.arr.(hash) with | Some { offset; length; payload } when offset == page lsl t.pagesize -> t.metrics.cache_hit <- t.metrics.cache_hit + 1; let len = Int.min (length - off) logical_len in Bigarray.Array1.sub payload off len | Some _ | None -> t.metrics.cache_miss <- t.metrics.cache_miss + 1; let { length; payload; _ } = load t logical_address in let len = Int.min (length - off) logical_len in Bigarray.Array1.sub payload off len end else begin t.metrics.cache_miss <- t.metrics.cache_miss + 1; let bstr = map fd ~pos len in let len = Int.min (Bigarray.Array1.dim bstr - off) logical_len in Bigarray.Array1.sub bstr off len end let load t ?(len = 1) logical_address = if len > 1 lsl t.pagesize then invalid_arg "Cachet.load: you can not load more than a page"; if logical_address < 0 then invalid_argf "Cachet.load: a logical address must be positive (%08x)" logical_address; let page = logical_address lsr t.pagesize in let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in let offset = logical_address land ((t.pagesize lsl 1) - 1) in match t.arr.(hash) with | Some slice as value when slice.offset == page lsl t.pagesize -> t.metrics.cache_hit <- t.metrics.cache_hit + 1; if slice.length - offset >= len then value else none | Some _ | None -> t.metrics.cache_miss <- t.metrics.cache_miss + 1; let slice = load t logical_address in if slice.length - offset >= len then Some slice else none let is_cached t logical_address = let page = logical_address lsr t.pagesize in let hash = hash 0l (page lsl t.pagesize) land ((1 lsl t.cachesize) - 1) in match t.arr.(hash) with | Some slice -> slice.offset == page lsl t.pagesize | None -> false let invalidate t ~off:logical_address ~len = if logical_address < 0 || len < 0 then invalid_arg "Cachet.invalidate: the logical address and/or the number of bytes to \ invalid must be positives"; let start_page = logical_address lsr t.pagesize in let end_page = (logical_address + len) lsr t.pagesize in let mask = (1 lsl t.cachesize) - 1 in for i = start_page to end_page - 1 do t.arr.(hash 0l (i lsl t.pagesize) land mask) <- None done let is_aligned x = x land ((1 lsl 2) - 1) == 0 exception Out_of_bounds of int let[@inline never] out_of_bounds offset = raise (Out_of_bounds offset) let get_uint8 t logical_address = match load t ~len:1 logical_address with | Some { payload; _ } -> let offset = logical_address land ((1 lsl t.pagesize) - 1) in Bstr.get_uint8 payload offset | None -> out_of_bounds logical_address let get_int8 t logical_address = (get_uint8 t logical_address lsl (Sys.int_size - 8)) asr (Sys.int_size - 8) let blit_to_bytes t ~src_off:logical_address buf ~dst_off ~len = if len < 0 || dst_off < 0 || dst_off > Bytes.length buf - len then invalid_arg "Cachet.blit_to_bytes"; let off = logical_address land ((1 lsl t.pagesize) - 1) in if is_aligned off && (1 lsl t.pagesize) - off >= len then begin match load t ~len logical_address with | None -> out_of_bounds logical_address | Some slice -> Bstr.blit_to_bytes slice.payload ~src_off:off buf ~dst_off:0 ~len end else for i = 0 to len - 1 do let v = get_uint8 t (logical_address + i) in Bytes.set_uint8 buf (dst_off + i) v done let get_string t ~len logical_address = let buf = Bytes.create len in blit_to_bytes t ~src_off:logical_address buf ~dst_off:0 ~len; Bytes.unsafe_to_string buf let get_uint16_ne t logical_address = let str = get_string t ~len:2 logical_address in String.get_uint16_ne str 0 let get_uint16_le t logical_address = let str = get_string t ~len:2 logical_address in String.get_uint16_le str 0 let get_uint16_be t logical_address = let str = get_string t ~len:2 logical_address in String.get_uint16_be str 0 let get_int16_ne t logical_address = let str = get_string t ~len:2 logical_address in String.get_int16_ne str 0 let get_int16_le t logical_address = let str = get_string t ~len:2 logical_address in String.get_int16_le str 0 let get_int16_be t logical_address = let str = get_string t ~len:2 logical_address in String.get_int16_be str 0 let get_int32_ne t logical_address = let str = get_string t ~len:4 logical_address in String.get_int32_ne str 0 let get_int32_le t logical_address = let str = get_string t ~len:4 logical_address in String.get_int32_le str 0 let get_int32_be t logical_address = let str = get_string t ~len:4 logical_address in String.get_int32_be str 0 let get_int64_ne t logical_address = let str = get_string t ~len:8 logical_address in String.get_int64_ne str 0 let get_int64_le t logical_address = let str = get_string t ~len:8 logical_address in String.get_int64_le str 0 let get_int64_be t logical_address = let str = get_string t ~len:8 logical_address in String.get_int64_be str 0 let rec get_seq t logical_address () = match load t logical_address with | Some { offset; payload; length; _ } -> let off = logical_address land ((1 lsl t.pagesize) - 1) in let len = length - off in let buf = Bytes.create len in Bstr.blit_to_bytes payload ~src_off:off buf ~dst_off:0 ~len; let str = Bytes.unsafe_to_string buf in let next = get_seq t (offset + (1 lsl t.pagesize)) in Seq.Cons (str, next) | None -> Seq.Nil let next t slice = load t (slice.offset + (1 lsl t.pagesize)) let naive_iter_with_len t len ~fn logical_address = for i = 0 to len - 1 do fn (get_uint8 t (logical_address + i)) done let iter_with_len t len ~fn logical_address = if len > 1 lsl t.pagesize then naive_iter_with_len t len ~fn logical_address else begin match load t logical_address with | Some { offset; payload; length } -> let off = logical_address land ((1 lsl t.pagesize) - 1) in let max = Int.min (length - off) len in for i = 0 to max - 1 do fn (Bstr.get_uint8 payload (off + i)) done; if max < len then begin let logical_address = offset + (1 lsl t.pagesize) in match load t logical_address with | Some { payload; length; _ } -> if len - max > length then out_of_bounds (logical_address + (len - max - 1)); for i = 0 to len - max - 1 do fn (Bstr.get_uint8 payload i) done | None -> out_of_bounds logical_address end | None -> out_of_bounds logical_address end let iter t ?len ~fn logical_address = match len with | Some len -> iter_with_len t len ~fn logical_address | None -> let rec go logical_address = match load t logical_address with | Some { offset; payload; length } -> let off = logical_address land ((1 lsl t.pagesize) - 1) in let len = length - off in for i = 0 to len - 1 do fn (Bstr.get_uint8 payload (off + i)) done; go (offset + (1 lsl t.pagesize)) | None -> () in go logical_address let syscalls t ~logical_address ~len = let pagesize = 1 lsl t.pagesize in let len = (logical_address land (pagesize - 1)) + len in let len = if (pagesize - 1) land len != 0 then (len + pagesize) land lnot (pagesize - 1) else len in len lsr t.pagesize