package prbnmcn-linalg

  1. Overview
  2. Docs

Source file vec.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
open Intf

(* Generic operations *)
module Generic = struct
  let vec n f = Vec (n, f)

  let ovec n f = OVec (n, f)

  let map f (Vec (n, v)) = Vec (n, fun x -> f (v x))

  let mapi f (Vec (n, v)) = Vec (n, fun x -> f x (v x))
end

module Make_internal
    (Repr : Basic_intf.Lang.Empty)
    (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m)
    (S : Basic_intf.Lang.Shape with type 'a m = 'a Repr.m)
    (B : Basic_intf.Lang.Bool with type 'a m = 'a Repr.m)
    (R : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m)
    (R_storage : Basic_intf.Lang.Storage
                   with type 'a m = 'a Repr.m
                    and type elt = R.t)
    (E : Basic_intf.Lang.Exn with type 'a m = 'a Repr.m)
    (M : Basic_intf.Lang.Sequencing with type 'a m = 'a Repr.m) =
struct
  type 'a k = 'a Monad.t

  type 'a m = 'a Repr.m

  type 'a shape = 'a S.t

  type ('a, 'b) morphism = ('a, 'b) S.Morphism.t

  type elt = R.t

  type 'a t = ('a shape, 'a m, elt m) vec

  type 'a out = ('a shape, 'a m, elt m, unit m) ovec

  open Monad.Infix

  let idim (Vec (s, _)) = s

  let odim (OVec (s, _)) = s

  let make s f = Generic.vec s f

  let pullback m (Vec (s, v)) =
    let u = S.Morphism.underlying m in
    let d = S.Morphism.domain m in
    let*! _ =
      B.dispatch (S.equal s (S.Morphism.range m)) @@ function
      | false -> E.raise_ Dimensions_mismatch
      | true -> M.unit
    in
    Monad.return (Vec (d, fun x -> v (u x)))

  let get (Vec (s, v)) i =
    let*! _ =
      B.dispatch (S.mem s i) (function
          | false -> E.raise_ Out_of_bounds
          | true -> M.unit)
    in
    Monad.return (v i)

  let unsafe_get (Vec (_, v)) i = v i

  let set (OVec (s, v)) i e =
    let*! _ =
      B.dispatch (S.mem s i) (function
          | false -> E.raise_ Out_of_bounds
          | true -> M.unit)
    in
    Monad.return (v i e)

  let map f (Vec (s, v)) = Vec (s, fun x -> f (v x))

  let mapi f (Vec (s, v)) = Vec (s, fun x -> f x (v x))

  let unsafe_map2 f s (Vec (_, v1)) (Vec (_, v2)) =
    Vec
      ( s,
        fun i ->
          let open M in
          let* v1i = v1 i in
          let* v2i = v2 i in
          f v1i v2i )
    [@@inline]

  let map2 f vec1 vec2 =
    let s1 = idim vec1 in
    let s2 = idim vec2 in
    let*! _ =
      B.dispatch (S.equal s1 s2) @@ function
      | false -> E.raise_ Dimensions_mismatch
      | true -> M.unit
    in
    Monad.return (unsafe_map2 f s1 vec1 vec2)

  let map2i f (Vec (s1, v1)) (Vec (s2, v2)) =
    let*! _ =
      B.dispatch S.(equal s1 s2) @@ function
      | false -> E.raise_ Dimensions_mismatch
      | true -> M.unit
    in
    Monad.return
      (Vec
         ( s1,
           fun i ->
             let open M in
             let* v1i = v1 i in
             let* v2i = v2 i in
             f i v1i v2i ))

  let assign :
      ('i shape, 'i m, 'a M.m, unit M.m) ovec ->
      ('i shape, 'i m, 'a M.m) vec ->
      ('i shape, 'i m, unit M.m) vec k =
   fun (OVec (s1, fo)) (Vec (s2, f)) ->
    let*! _ =
      B.dispatch (S.equal s1 s2) @@ function
      | false -> E.raise_ Dimensions_mismatch
      | true -> M.unit
    in
    Monad.return
      (Vec
         ( s1,
           fun i ->
             let vi = f i in
             fo i vi ))

  let zero s = Vec (s, fun _ -> R.zero)

  let one s = Vec (s, fun _ -> R.one)

  let const s r = Vec (s, fun _ -> r)

  let basis s i r =
    let*! _ =
      B.dispatch (S.mem s i) @@ function
      | false -> E.raise_ Out_of_bounds
      | true -> M.unit
    in
    Monad.return
      (Vec
         ( s,
           fun j ->
             B.dispatch (S.pos_equal s j i) @@ function
             | true -> r
             | false -> R.zero ))

  let add (v1 : 'a t) (v2 : 'a t) = map2 R.add v1 v2

  let sub (v1 : 'a t) (v2 : 'a t) =
    map2 (fun r1 r2 -> R.add r1 (R.neg r2)) v1 v2

  let unsafe_mul n (v1 : 'a t) (v2 : 'a t) = unsafe_map2 R.mul n v1 v2

  let mul (v1 : 'a t) (v2 : 'a t) = map2 R.mul v1 v2

  let neg (Vec (n, f)) =
    Vec
      ( n,
        fun i ->
          M.(
            let* vi = f i in
            R.neg vi) )

  let smul r (Vec (n, f)) =
    Vec
      ( n,
        fun i ->
          M.(
            let* vi = f i in
            R.mul r vi) )

  let swap i1 i2 (Vec (s, f)) =
    let*! _ =
      B.dispatch B.(S.mem s i1 && S.mem s i2) @@ function
      | false -> E.raise_ Out_of_bounds
      | true -> M.unit
    in
    let vecfun (i : 'a m) =
      B.dispatch (S.pos_equal s i i1) @@ function
      | true -> f i2
      | false -> (
          B.dispatch (S.pos_equal s i i2) @@ function
          | true -> f i1
          | false -> f i)
    in
    Monad.return (Vec (s, vecfun))

  let reduce_generic :
      type acc elt index.
      acc S.storage ->
      (acc m -> elt m -> acc m) ->
      acc m ->
      (index shape, index m, elt m) vec ->
      acc m =
    fun (type acc) storage f (init : acc m) (Vec (s, v)) ->
     S.fold
       storage
       (fun i acc ->
         let open M in
         let* vi = v i in
         f acc vi)
       s
       init

  let reduce f init vec = reduce_generic (module R_storage) f init vec

  let iter (Vec (s, v)) = S.iter v s

  let ( := ) vout vin =
    let* result = assign vout vin in
    Monad.return (iter result)

  let add_ vout v1 v2 =
    let* res = add v1 v2 in
    vout := res

  let sub_ vout v1 v2 =
    let* res = sub v1 v2 in
    vout := res

  let mul_ vout v1 v2 =
    let* res = mul v1 v2 in
    vout := res

  let dot v1 v2 =
    let* res = mul v1 v2 in
    Monad.return (reduce R.add R.zero res)

  let unsafe_dot n v1 v2 =
    let vec = unsafe_mul n v1 v2 in
    reduce R.add R.zero vec

  module Infix = struct
    let ( ~! ) = Monad.return

    let ( + ) x y =
      let* x = x in
      let* y = y in
      add x y

    let ( - ) x y =
      let* x = x in
      let* y = y in
      sub x y

    let ( * ) x y =
      let* x = x in
      let* y = y in
      mul x y

    let ( ~- ) vec = Monad.lift1 neg vec

    let ( %* ) x y =
      let* y = y in
      Monad.return (smul x y)

    let ( <*> ) x y =
      let* x = x in
      let* y = y in
      dot x y

    let ( .%{} ) x y =
      let* x = x in
      get x y

    let ( .%{}<- ) x y z = set x y z

    let ( := ) x y =
      let* y = y in
      x := y
  end
end
[@@inline]

module Make : functor
  (Repr : Basic_intf.Lang.Empty)
  (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m)
  (S : Basic_intf.Lang.Shape with type 'a m = 'a Repr.m)
  (B : Basic_intf.Lang.Bool with type 'a m = 'a Repr.m)
  (R : Basic_intf.Lang.Ring with type 'a m = 'a Repr.m)
  (R_storage : Basic_intf.Lang.Storage
                 with type 'a m = 'a Repr.m
                  and type elt = R.t)
  (E : Basic_intf.Lang.Exn with type 'a m = 'a Repr.m)
  (M : Basic_intf.Lang.Sequencing with type 'a m = 'a Repr.m)
  ->
  Intf.Vec
    with type 'a k = 'a Monad.t
     and type 'a m = 'a Repr.m
     and type 'a shape = 'a S.t
     and type ('a, 'b) morphism = ('a, 'b) S.Morphism.t
     and type elt = R.t =
  Make_internal

module Array_backed
    (Repr : Basic_intf.Lang.Empty)
    (Monad : Basic_intf.Codegen_monad with type 'a m = 'a Repr.m)
    (S : Intf.Tensor with type 'a m = 'a Repr.m)
    (A : Basic_intf.Lang.Array with type index = S.pos and type 'a m = 'a Repr.m) =
struct
  let of_array (a : A.t Repr.m) =
    let n = A.length a in
    let shape = S.rank_one n in
    let vec = Vec (shape, fun i -> A.unsafe_get a i) in
    let ovec = OVec (shape, fun i v -> A.unsafe_set a i v) in
    (vec, ovec)

  let in_of_array (a : A.t Repr.m) =
    let n = A.length a in
    let shape = S.rank_one n in
    Vec (shape, fun i -> A.unsafe_get a i)

  let out_of_array (a : A.t Repr.m) =
    let n = A.length a in
    let shape = S.rank_one n in
    OVec (shape, fun i v -> A.unsafe_set a i v)
end
[@@inline]

(* Instantiate some typical schemes *)

module BL = Basic_impl.Lang
module Make_native
    (R : Basic_intf.Lang.Ring with type 'a m = 'a)
    (R_storage : Basic_intf.Lang.Storage with type 'a m = 'a and type elt = R.t) =
  Make_internal (BL.Empty) (BL.Codegen) (Tensor.Int) (BL.Bool) (R) (R_storage)
    (BL.Exn)
    (BL.Sequencing)
module Float = Make_native (BL.Float) (BL.Float_storage)
module Rational = Make_native (BL.Rational) (BL.Make_storage (BL.Rational))