Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
lwd_table.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
type 'a binding = | Bound of { value : 'a ; mutable valid : bool } | Unbound type 'a tree = | Leaf | Node of { mutable version : int; mutable left : 'a tree; mutable binding : 'a binding; mutable right : 'a tree; mutable parent : 'a tree; mutable size : int; } | Root of { mutable version : int; mutable child : 'a tree; mutable generation : unit ref; mutable on_invalidate : Obj.t Lwd.prim list; } type 'a t = 'a tree type 'a row = 'a tree let not_origin = ref () (* not {!origin} *) let origin = ref () (* not {!not_origin} *) let make () = Root { child = Leaf; generation = origin; version = 0; on_invalidate = [] } let set_parent ~parent = function | Root _ -> assert false | Node n -> n.parent <- parent | Leaf -> () let reparent ~parent ~oldchild ~newchild = match parent with | Root r -> assert (r.child == oldchild); r.child <- newchild | Node n when n.left == oldchild -> n.left <- newchild | Node n when n.right == oldchild -> n.right <- newchild | Leaf | Node _ -> assert false let make_node set ~left ~right ~parent = let binding = match set with | None -> Unbound | Some value -> Bound { value ; valid = true } in let node = Node { left; right; parent; version = 0; size = 0; binding } in set_parent left ~parent:node; set_parent right ~parent:node; node let rec raw_invalidate = function | Node { size = 0; _ } -> () | Node t -> t.size <- 0; raw_invalidate t.parent | Root r -> List.iter Lwd.invalidate r.on_invalidate | Leaf -> assert false let prepend ?set = function | Root r as parent -> raw_invalidate parent; let node = make_node set ~left:Leaf ~right:r.child ~parent in r.child <- node; node | Leaf | Node _ -> assert false let prepend' x set = ignore (prepend x ~set) let append ?set = function | Root r as parent -> raw_invalidate parent; let node = make_node set ~left:r.child ~right:Leaf ~parent in r.child <- node; node | Leaf | Node _ -> assert false let append' x set = ignore (append x ~set) let before ?set = function | Node { parent = Leaf ; _ } | Leaf -> Leaf | Node n as parent -> raw_invalidate parent; let node = make_node set ~left:n.left ~right:Leaf ~parent in n.left <- node; node | Root _ -> assert false let after ?set = function | Node { parent = Leaf ; _ } | Leaf -> Leaf | Node n as parent -> raw_invalidate parent; let node = make_node set ~left:Leaf ~right:n.right ~parent in n.right <- node; node | Root _ -> assert false let get = function | Node { binding = Bound { value ; _ } ; _ } -> Some value | Leaf | Root _ | Node { binding = Unbound ; _ } -> None let invalidate_binding = function | Unbound -> () | Bound b -> b.valid <- false let set_binding x = function | Root _ -> assert false | Leaf | Node { parent = Leaf; _ } -> () | Node n as t -> raw_invalidate t; invalidate_binding n.binding; n.binding <- x let set t value = set_binding (Bound { value; valid = true }) t let unset t = set_binding Unbound t let is_bound = function | Leaf | Node { parent = Leaf; _ } -> false | Root _ | Node _ -> true let rec join left = function | Root _ | Leaf -> assert false | Node ({ left = Leaf; _ } as n) as self -> n.left <- left; set_parent left ~parent:self; self | Node node -> join left node.left let remove = function | Root _ | Leaf | Node {parent = Leaf; _} -> () | Node ({left; right; parent; _} as n) as t -> invalidate_binding n.binding; n.left <- Leaf; n.right <- Leaf; n.parent <- Leaf; n.binding <- Unbound; n.version <- max_int; let join, invalid = match left, right with | Leaf, other | other, Leaf -> (other, parent) | _ -> (right, join left right) in reparent ~parent ~oldchild:t ~newchild:join; set_parent join ~parent; raw_invalidate invalid let rec clear = function | Leaf -> () | Node ({left; right; _} as n) -> invalidate_binding n.binding; n.left <- Leaf; n.right <- Leaf; n.parent <- Leaf; n.binding <- Unbound; n.version <- max_int; clear left; clear right | Root r as root -> let child = r.child in r.child <- Leaf; clear child; raw_invalidate root (* Tree balancing *) let size = function | Node node -> assert (node.size <> 0); node.size | Leaf -> 0 | Root _ -> assert false (** [smaller_ell smin smax] iff - [smin] is less than [smax] - [smin] and [smax] differs by less than two magnitude orders, i.e msbs(smin) >= msbs(smax) - 1 where msbs is the index of the most significant bit set *) let smaller_ell smin smax = (smin < smax) && ((smin land smax) lsl 1 < smax) (** [disbalanced smin smax] check if two sub-trees of size [smin] and [smax], are disbalanczed. That is, msbs(smin) < msbs(smax) - 1 *) let disbalanced smin smax = smaller_ell smin (smax lsr 1) let reparent ~parent ~oldchild ~newchild = match parent with | Root r -> assert (r.child == oldchild); r.child <- newchild; | Node n when n.left == oldchild -> n.left <- newchild | Node n when n.right == oldchild -> n.right <- newchild | Leaf | Node _ -> assert false let rec rot_left version = function | Node ({ right = (Node rn) as r; _} as sn) as s -> let parent = sn.parent in let rl = match rn.left with | Root _ -> assert false | Leaf -> Leaf | (Node rln) as rl -> rln.parent <- s; rl in rn.left <- s; sn.right <- rl; sn.parent <- r; rn.parent <- parent; reparent ~parent ~oldchild:s ~newchild:r; ignore (balance version s); balance version r | _ -> assert false and rot_right version = function | Node ({ left = (Node ln) as l; _} as sn) as s -> let parent = sn.parent in let lr = match ln.right with | Root _ -> assert false | Leaf -> Leaf | (Node lrn) as lr -> lrn.parent <- s; lr in ln.right <- s; sn.left <- lr; sn.parent <- l; ln.parent <- parent; reparent ~parent ~oldchild:s ~newchild:l; ignore (balance version s); balance version l | _ -> assert false and inc_left version = function | Root _ | Leaf -> assert false | Node {right; _} as self -> begin match right with | Node rn when smaller_ell (size rn.right) (size rn.left) -> ignore (rot_right version right) | _ -> () end; rot_left version self and inc_right version = function | Root _ | Leaf -> assert false | Node {left; _} as self -> begin match left with | Node ln when smaller_ell (size ln.left) (size ln.right) -> ignore (rot_left version left) | _ -> () end; rot_right version self and balance version = function | Root _ | Leaf -> assert false | Node node as self -> let sl = size node.left and sr = size node.right in if sl < sr then ( if disbalanced sl sr then inc_left version self else (node.version <- version; node.size <- 1 + sl + sr; self) ) else ( if disbalanced sr sl then inc_right version self else (node.version <- version; node.size <- 1 + sl + sr; self) ) let rec _compute_sub_size1 version = function | Root _ -> () | Leaf -> () | Node node as self -> if node.size = 0 then begin _compute_sub_size1 version node.left; _compute_sub_size1 version node.right; ignore (balance version self) end let compute_sub_size = _compute_sub_size1 let rec reset_version version = function | Leaf -> () | Node n -> n.version <- version; reset_version version n.left; reset_version version n.right | Root _ -> assert false let rebalance = function | Root r -> begin match r.child with | Node { size = 0; _ } -> let version = succ r.version in let version = if version = max_int then ( r.generation <- ref (); reset_version 0 r.child; 0 ) else version in r.version <- version; compute_sub_size version r.child; version | Node _ | Leaf -> r.version | Root _ -> assert false end | _ -> assert false let plus (zero, plus) x y = if x == zero then y else if y == zero then x else plus x y type ('a, 'b) reduction_tree = | Red_leaf | Red_node of { cell: 'a row; binding: 'a binding; reduction: 'b; aggregate: 'b; left : ('a, 'b) reduction_tree; right : ('a, 'b) reduction_tree; } type ('a, 'b) reduction = { mutable version: int; source: 'a tree; mutable result : ('a, 'b) reduction_tree; mutable generation: unit ref; mapper: 'a row -> 'a -> 'b; monoid: 'b Lwd_utils.monoid; } let extract_bindings tree = let rec aux acc = function | Red_leaf -> acc | Red_node rnode -> let acc = aux acc rnode.right in let acc = match rnode.binding with | Unbound -> acc | Bound { valid = false; _ } -> acc | _ -> (rnode.binding, rnode.reduction) :: acc in aux acc rnode.left in aux [] tree let full_rebuild red tree = let bindings = ref (extract_bindings red.result) in let rec aux = function | Node node as cell -> let left = aux node.left in let reduction = match node.binding, !bindings with | Unbound, _ -> fst red.monoid | binding, ((binding', reduction) :: bindings') when binding == binding' -> bindings := bindings'; reduction | Bound b, _ -> assert b.valid; red.mapper cell b.value in let right = aux node.right in let aggregate = match left with | Red_leaf -> reduction | Red_node r -> plus red.monoid r.aggregate reduction in let aggregate = match right with | Red_leaf -> aggregate | Red_node r -> plus red.monoid aggregate r.aggregate in Red_node { cell; binding = node.binding; reduction; aggregate; left; right; } | Leaf -> Red_leaf | Root _ -> assert false in let result = aux tree in assert (!bindings = []); result let extract_fringe version tree = let rec aux acc = function | Red_leaf -> acc | Red_node rnode as tree -> match rnode.cell with | Node node when node.version <= version -> tree :: acc | _ -> let acc = aux acc rnode.right in let acc = match rnode.binding with | Unbound -> acc | Bound { valid = false; _ } -> acc | _ -> tree :: acc in aux acc rnode.left in aux [] tree let incremental_rebuild red version tree = let fringe = ref (extract_fringe version red.result) in let rec aux = function | Node node as cell when node.version <= version -> begin match !fringe with | (Red_node rnode as reduction) :: fringe' -> assert (rnode.cell == cell); fringe := fringe'; reduction | _ -> assert false end | Node node as cell -> let left = aux node.left in let reduction = match node.binding, !fringe with | Unbound, _ -> fst red.monoid | binding, (Red_node rnode :: fringe') when binding == rnode.binding -> fringe := fringe'; rnode.reduction | Bound b, _ -> assert b.valid; red.mapper cell b.value in let right = aux node.right in let aggregate = match left with | Red_leaf -> reduction | Red_node r -> plus red.monoid r.aggregate reduction in let aggregate = match right with | Red_leaf -> aggregate | Red_node r -> plus red.monoid aggregate r.aggregate in Red_node { cell; binding = node.binding; reduction; aggregate; left; right; } | Root _ | Leaf -> Red_leaf in let result = aux tree in assert (!fringe = []); result let eval red = match red.source with | Leaf | Node _ -> assert false | Root root -> let version = rebalance red.source in if true then ( if red.generation != root.generation then ( red.generation <- root.generation; red.result <- full_rebuild red root.child; ) else ( red.result <- incremental_rebuild red red.version root.child ); ) else ( red.result <- full_rebuild red root.child; ); red.version <- version; match red.result with | Red_leaf -> fst red.monoid | Red_node r -> r.aggregate let opaque : 'a Lwd.prim -> Obj.t Lwd.prim = Obj.magic let map_reduce mapper monoid source = let reduction = { source; mapper; monoid; result = Red_leaf; generation = not_origin; version = 0; } in let prim = Lwd.prim ~acquire:(fun self -> match reduction.source with | Leaf | Node _ -> assert false | Root root -> root.on_invalidate <- opaque self :: root.on_invalidate; reduction ) ~release:(fun self reduction -> match reduction.source with | Leaf | Node _ -> assert false | Root root -> root.on_invalidate <- List.filter ((!=) (opaque self)) root.on_invalidate ) in Lwd.map ~f:eval (Lwd.get_prim prim) let reduce monoid source = map_reduce (fun _ x -> x) monoid source let rec iter f = function | Leaf -> () | Node t -> iter f t.left; begin match t.binding with | Bound x -> f x.value | Unbound -> () end; iter f t.right | Root t -> iter f t.child let rec left_most : 'a row -> 'a row option = function | Root _ -> assert false | Leaf -> None | Node n as self -> match left_most n.left with | Some _ as x -> x | None -> Some self let rec right_most : 'a row -> 'a row option = function | Root _ -> assert false | Leaf -> None | Node n as self -> match right_most n.right with | Some _ as x -> x | None -> Some self let first : 'a t -> 'a row option = function | Leaf | Node _ -> assert false | Root root -> left_most root.child let last : 'a t -> 'a row option = function | Leaf | Node _ -> assert false | Root root -> right_most root.child let next : 'a row -> 'a row option = function | Root _ -> assert false | Leaf -> None | Node n as self -> match left_most n.right with | Some _ as x -> x | None -> let rec walk_root self = function | Leaf -> assert false | Root _ -> None | Node n' as parent -> if n'.left == self then Some parent else ( assert (n'.right == self); walk_root parent n'.parent ) in walk_root self n.parent let prev : 'a row -> 'a row option = function | Root _ -> assert false | Leaf -> None | Node n as self -> match right_most n.left with | Some _ as x -> x | None -> let rec walk_root self = function | Leaf -> assert false | Root _ -> None | Node n' as parent -> if n'.right == self then Some parent else ( assert (n'.left == self); walk_root parent n'.parent ) in walk_root self n.parent