package gmap

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file gmap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
(* (c) 2017, 2018 Hannes Mehnert, all rights reserved *)

(* this code wouldn't exist without Justus Matthiesen, thanks for the help! *)

module Order = struct
  type (_,_) t =
    | Lt : ('a, 'b) t
    | Eq : ('a, 'a) t
    | Gt : ('a, 'b) t
end

module type KEY = sig
  type _ t
  val compare : 'a t -> 'b t -> ('a, 'b) Order.t
end

module type S = sig
  type 'a key
  type t

  val empty : t
  val singleton : 'a key -> 'a -> t
  val is_empty : t -> bool
  val cardinal : t -> int
  val mem : 'a key -> t -> bool
  val find : 'a key -> t -> 'a option
  val get : 'a key -> t -> 'a
  val add_unless_bound : 'a key -> 'a -> t -> t option
  val add : 'a key -> 'a -> t -> t
  val remove : 'a key -> t -> t
  val update : 'a key -> ('a option -> 'a option) -> t -> t

  type b = B : 'a key * 'a -> b

  val min_binding : t -> b option
  val max_binding : t -> b option
  val any_binding :  t -> b option
  val bindings : t -> b list

  type eq = { f : 'a . 'a key -> 'a -> 'a -> bool }
  val equal : eq -> t -> t -> bool

  type mapper = { f : 'a. 'a key -> 'a -> 'a }
  val map : mapper -> t -> t

  val iter : (b -> unit) -> t -> unit
  val fold : (b -> 'a -> 'a) -> t -> 'a -> 'a
  val for_all : (b -> bool) -> t -> bool
  val exists : (b -> bool) -> t -> bool
  val filter : (b -> bool) -> t -> t
  type merger = { f : 'a. 'a key -> 'a option -> 'a option -> 'a option }
  val merge : merger -> t -> t -> t
  type unionee = { f : 'a. 'a key -> 'a -> 'a -> 'a option }
  val union : unionee -> t -> t -> t
end

module Make (Key : KEY) : S with type 'a key = 'a Key.t = struct
  type 'a key = 'a Key.t
  type k = K : 'a key -> k
  type b = B : 'a key * 'a -> b

  module M = Map.Make(struct
      type t = k
      let compare (K a) (K b) = match Key.compare a b with
        | Order.Lt -> -1 | Order.Eq -> 0 | Order.Gt -> 1
    end)

  type t = b M.t

  let empty = M.empty
  let singleton k v = M.singleton (K k) (B (k, v))

  let is_empty = M.is_empty
  let mem k m = M.mem (K k) m

  let add k v m = M.add (K k) (B (k, v)) m

  let add_unless_bound k v m = if mem k m then None else Some (add k v m)

  let remove k m = M.remove (K k) m

  let get : type a. a key -> t -> a = fun k m ->
    match M.find (K k) m with
    | B (k', v) ->
      (* TODO this compare (and further below similar ones) is only needed for
         the type checker (to get the k = k' proof), because the invariant
         foreach k . t [K k] = B (k', v) -> k = k' is preserved by this library

         it could be replaced by:
          - Obj.magic
          - vendor and slight modification of Stdlib.Map
          - using integers as key -> compare can be a single instruction
         Stay better safe than sorry (at least for now) *)
      match Key.compare k k' with
      | Order.Eq -> v
      | _ -> assert false

  let find : type a. a key -> t -> a option = fun k m ->
    try Some (get k m) with Not_found -> None

  let update k f m =
    match f (find k m) with
    | None -> remove k m
    | Some v -> add k v m

  let any_binding m = try Some (snd (M.choose m)) with Not_found -> None
  let min_binding m = try Some (snd (M.min_binding m)) with Not_found -> None
  let max_binding m = try Some (snd (M.max_binding m)) with Not_found -> None
  let bindings m = snd (List.split (M.bindings m))

  let cardinal m = M.cardinal m

  let for_all p m = M.for_all (fun _ b -> p b) m
  let exists p m = M.exists (fun _ b -> p b) m

  let iter f m = M.iter (fun _ b -> f b) m
  let fold f m acc = M.fold (fun _ b acc -> f b acc) m acc
  let filter p m = M.filter (fun _ b -> p b) m

  type mapper = { f : 'a. 'a key -> 'a -> 'a }
  let map f m = M.map (fun (B (k, v)) -> B (k, f.f k v)) m

  type merger = { f : 'a. 'a key -> 'a option -> 'a option -> 'a option }
  let merge f m m' =
    M.merge (fun (K k) b b' ->
        match b, b' with
        | None, None ->
          begin match f.f k None None with
            | None -> None
            | Some v -> Some (B (k, v))
          end
        | None, Some (B (k', v)) ->
          (* see above comment about compare *)
          begin match Key.compare k k' with
            | Order.Eq ->
              (match f.f k None (Some v) with
               | None -> None
               | Some v -> Some (B (k, v)))
            | _ -> assert false
          end
        | Some (B (k', v)), None ->
          (* see above comment about compare *)
          begin match Key.compare k k' with
            | Order.Eq ->
              (match f.f k (Some v) None with
               | None -> None
               | Some v -> Some (B (k, v)))
            | _ -> assert false
          end
        | Some (B (k', v)), Some (B (k'', v')) ->
          (* see above comment about compare *)
          begin match Key.compare k k', Key.compare k k'' with
           | Order.Eq, Order.Eq ->
             (match f.f k (Some v) (Some v') with
              | None -> None
              | Some v -> Some (B (k, v)))
           | _ -> assert false
          end)
      m m'

  type unionee = { f : 'a. 'a key -> 'a -> 'a -> 'a option }
  let union f m m' =
    M.union
      (fun (K k) (B (k', v)) (B (k'', v')) ->
         (* see above comment about compare *)
         match Key.compare k k', Key.compare k k'' with
         | Order.Eq, Order.Eq ->
           (match f.f k v v' with None -> None | Some v'' -> Some (B (k, v'')))
         | _ -> assert false)
      m m'

  type eq = { f : 'a . 'a key -> 'a -> 'a -> bool }
  let equal cmp m m' =
    M.equal (fun (B (k, v)) (B (k', v')) ->
        (* see above comment about compare *)
        match Key.compare k k' with
        | Order.Eq -> cmp.f k v v'
        | _ -> assert false)
      m m'
end
OCaml

Innovation. Community. Security.