package base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file info.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
(* This module is trying to minimize dependencies on modules in Core, so as to allow
   [Info], [Error], and [Or_error] to be used in as many places as possible. Please avoid
   adding new dependencies. *)

open! Import
include Info_intf
module String = String0

module Message = struct
  type t =
    | Could_not_construct of Sexp.t
    | String of string
    | Exn of exn
    | Sexp of Sexp.t
    | Tag_sexp of string * Sexp.t * Source_code_position0.t option
    | Tag_t of string * t
    | Tag_arg of string * Sexp.t * t
    | Of_list of int option * t list
    | With_backtrace of t * string (* backtrace *)
  [@@deriving_inline sexp_of]

  let rec sexp_of_t =
    (function
     | Could_not_construct arg0__001_ ->
       let res0__002_ = Sexp.sexp_of_t arg0__001_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Could_not_construct"; res0__002_ ]
     | String arg0__003_ ->
       let res0__004_ = sexp_of_string arg0__003_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "String"; res0__004_ ]
     | Exn arg0__005_ ->
       let res0__006_ = sexp_of_exn arg0__005_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Exn"; res0__006_ ]
     | Sexp arg0__007_ ->
       let res0__008_ = Sexp.sexp_of_t arg0__007_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Sexp"; res0__008_ ]
     | Tag_sexp (arg0__009_, arg1__010_, arg2__011_) ->
       let res0__012_ = sexp_of_string arg0__009_
       and res1__013_ = Sexp.sexp_of_t arg1__010_
       and res2__014_ = sexp_of_option Source_code_position0.sexp_of_t arg2__011_ in
       Sexplib0.Sexp.List
         [ Sexplib0.Sexp.Atom "Tag_sexp"; res0__012_; res1__013_; res2__014_ ]
     | Tag_t (arg0__015_, arg1__016_) ->
       let res0__017_ = sexp_of_string arg0__015_
       and res1__018_ = sexp_of_t arg1__016_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Tag_t"; res0__017_; res1__018_ ]
     | Tag_arg (arg0__019_, arg1__020_, arg2__021_) ->
       let res0__022_ = sexp_of_string arg0__019_
       and res1__023_ = Sexp.sexp_of_t arg1__020_
       and res2__024_ = sexp_of_t arg2__021_ in
       Sexplib0.Sexp.List
         [ Sexplib0.Sexp.Atom "Tag_arg"; res0__022_; res1__023_; res2__024_ ]
     | Of_list (arg0__025_, arg1__026_) ->
       let res0__027_ = sexp_of_option sexp_of_int arg0__025_
       and res1__028_ = sexp_of_list sexp_of_t arg1__026_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "Of_list"; res0__027_; res1__028_ ]
     | With_backtrace (arg0__029_, arg1__030_) ->
       let res0__031_ = sexp_of_t arg0__029_
       and res1__032_ = sexp_of_string arg1__030_ in
       Sexplib0.Sexp.List [ Sexplib0.Sexp.Atom "With_backtrace"; res0__031_; res1__032_ ]
      : t -> Sexplib0.Sexp.t)
  ;;

  [@@@end]

  let rec to_sexps_hum t ac =
    match t with
    | Could_not_construct _ as t -> sexp_of_t t :: ac
    | String string -> Atom string :: ac
    | Exn exn -> Exn.sexp_of_t exn :: ac
    | Sexp sexp -> sexp :: ac
    | Tag_sexp (tag, sexp, here) ->
      List
        (Atom tag
         :: sexp
         ::
         (match here with
          | None -> []
          | Some here -> [ Source_code_position0.sexp_of_t here ]))
      :: ac
    | Tag_t (tag, t) -> List (Atom tag :: to_sexps_hum t []) :: ac
    | Tag_arg (tag, sexp, t) ->
      let body = sexp :: to_sexps_hum t [] in
      if String.length tag = 0 then List body :: ac else List (Atom tag :: body) :: ac
    | With_backtrace (t, backtrace) ->
      Sexp.List
        [ to_sexp_hum t; sexp_of_list sexp_of_string (String.split_lines backtrace) ]
      :: ac
    | Of_list (_, ts) ->
      List.fold (List.rev ts) ~init:ac ~f:(fun ac t -> to_sexps_hum t ac)

  and to_sexp_hum t =
    match to_sexps_hum t [] with
    | [ sexp ] -> sexp
    | sexps -> Sexp.List sexps
  ;;
end

open Message

module Computed = struct
  (* Memoized, lazily-computed representation of messages. Maintains its own state to
     avoid stack overflow from nested [Lazy.t]. *)

  (* We use a global [state ref] so we can mutate [state], but still [globalize] with no
     cost and without duplicating state. *)
  type info = { state : state ref } [@@unboxed]

  (* An [info] starts as a [constructor]. When forced, it is marked [Computing] to avoid
     cycles. When finished, the final [message] is recorded. *)
  and state =
    | Initial of constructor
    | Computing
    | Final of Message.t

  (* Recursive constructors for [Info.t]. Others can be built directly as [Message.t]. *)
  and constructor =
    | Cons_lazy_info of info Lazy.t
    | Cons_list of info list
    | Cons_tag_arg of string * Sexp.t * info
    | Cons_tag_t of string * info

  (* This is a no-op, since [info] is unboxed. *)
  let globalize_info { state } = { state }

  (* We keep a list of stack_frames while computing, rather than using the call stack. *)
  type stack_frame =
    | In_info of info
    | In_tag_arg of string * Sexp.t
    | In_tag_t of string
    | In_list of
        { fwd_prefix : info list
        ; rev_suffix : Message.t list
        }

  (* The following mutually-recursive functions compute a [Message.t] from an [info].
     All calls below are tail calls: we want to avoid using the call stack in favor
     of our own manual stack. *)
  let rec compute_info info stack =
    match !(info.state) with
    | Initial cons ->
      info.state := Computing;
      compute_constructor cons (In_info info :: stack)
    | Computing ->
      compute_message (Could_not_construct (Atom "cycle while computing message")) stack
    | Final message -> compute_message message stack

  and compute_info_list ~fwd_prefix ~rev_suffix stack =
    match fwd_prefix with
    | info :: fwd_prefix -> compute_info info (In_list { fwd_prefix; rev_suffix } :: stack)
    | [] ->
      let infos =
        List.fold rev_suffix ~init:[] ~f:(fun tail message ->
          match message with
          | Of_list (_, messages) -> messages @ tail
          | _ -> message :: tail)
      in
      compute_message (Of_list (None, infos)) stack

  and compute_constructor cons stack =
    match cons with
    | Cons_tag_arg (tag, arg, info) -> compute_info info (In_tag_arg (tag, arg) :: stack)
    | Cons_tag_t (tag, info) -> compute_info info (In_tag_t tag :: stack)
    | Cons_list infos -> compute_info_list ~fwd_prefix:infos ~rev_suffix:[] stack
    | Cons_lazy_info lazy_info ->
      (match Lazy.force lazy_info with
       | info -> compute_info info stack
       | exception exn -> compute_message (Could_not_construct (Exn.sexp_of_t exn)) stack)

  and compute_message message stack =
    match stack with
    | [] -> message
    | In_info info :: stack ->
      info.state := Final message;
      compute_message message stack
    | In_tag_arg (tag, arg) :: stack ->
      compute_message (Tag_arg (tag, arg, message)) stack
    | In_tag_t tag :: stack -> compute_message (Tag_t (tag, message)) stack
    | In_list { fwd_prefix; rev_suffix } :: stack ->
      compute_info_list ~fwd_prefix ~rev_suffix:(message :: rev_suffix) stack
  ;;

  (* Helper functions for converting and constructing [info]. *)

  let to_message info = compute_info info []
  let of_message message = { state = ref (Final message) }

  let is_computed info =
    match !(info.state) with
    | Initial _ | Computing -> false
    | Final _ -> true
  ;;

  let of_cons cons = { state = ref (Initial cons) }
  let of_lazy_info lazy_info = of_cons (Cons_lazy_info lazy_info)

  let of_lazy_cons lazy_cons =
    of_cons (Cons_lazy_info (lazy (of_cons (Lazy.force lazy_cons))))
  ;;

  let of_lazy_message lazy_message =
    of_cons (Cons_lazy_info (lazy (of_message (Lazy.force lazy_message))))
  ;;
end

open Computed

type t = Computed.info

let globalize = Computed.globalize_info
let invariant _ = ()

(* It is OK to use [Message.to_sexp_hum], which is not stable, because [t_of_sexp] below
   can handle any sexp. *)
let sexp_of_t t = Message.to_sexp_hum (to_message t)
let t_of_sexp sexp = of_message (Message.Sexp sexp)
let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = { untyped = Any "Info.t" }
let compare t1 t2 = Sexp.compare (sexp_of_t t1) (sexp_of_t t2)
let compare__local t1 t2 = compare (globalize t1) (globalize t2)
let equal t1 t2 = Sexp.equal (sexp_of_t t1) (sexp_of_t t2)
let equal__local t1 t2 = equal (globalize t1) (globalize t2)
let hash_fold_t state t = Sexp.hash_fold_t state (sexp_of_t t)
let hash t = Hash.run hash_fold_t t

let to_string_hum t =
  match to_message t with
  | String s -> s
  | message -> Sexp.to_string_hum (Message.to_sexp_hum message)
;;

let to_string_mach t = Sexp.to_string_mach (sexp_of_t t)
let of_lazy l = of_lazy_message (lazy (String (Lazy.force l)))
let of_lazy_sexp l = of_lazy_message (lazy (Sexp (Lazy.force l)))
let of_lazy_t lazy_t = of_lazy_info lazy_t
let of_string message = of_message (String message)
let createf format = Printf.ksprintf of_string format
let of_thunk f = of_lazy_message (lazy (String (f ())))

let create ?here ?strict tag x sexp_of_x =
  match strict with
  | None -> of_lazy_message (lazy (Tag_sexp (tag, sexp_of_x x, here)))
  | Some () -> of_message (Tag_sexp (tag, sexp_of_x x, here))
;;

let create_s sexp = of_message (Sexp sexp)
let tag t ~tag = of_cons (Cons_tag_t (tag, t))
let tag_s_lazy t ~tag = of_lazy_cons (lazy (Cons_tag_arg ("", Lazy.force tag, t)))
let tag_s t ~tag = of_cons (Cons_tag_arg ("", tag, t))
let tag_arg t tag x sexp_of_x = of_lazy_cons (lazy (Cons_tag_arg (tag, sexp_of_x x, t)))
let of_list ts = of_cons (Cons_list ts)

exception Exn of t

let () =
  (* We install a custom exn-converter rather than use
     [exception Exn of t [@@deriving_inline sexp] ... [@@@end]] to eliminate the extra
     wrapping of "(Exn ...)". *)
  Sexplib0.Sexp_conv.Exn_converter.add [%extension_constructor Exn] (function
    | Exn t -> sexp_of_t t
    | _ ->
      (* Reaching this branch indicates a bug in sexplib. *)
      assert false)
;;

let to_exn t =
  if not (is_computed t)
  then Exn t
  else (
    match to_message t with
    | Message.Exn exn -> exn
    | _ -> Exn t)
;;

let of_exn ?backtrace exn =
  let backtrace =
    match backtrace with
    | None -> None
    | Some `Get -> Some (Stdlib.Printexc.get_backtrace ())
    | Some (`This s) -> Some s
  in
  match exn, backtrace with
  | Exn t, None -> t
  | Exn t, Some backtrace ->
    of_lazy_message (lazy (With_backtrace (to_message t, backtrace)))
  | _, None -> of_message (Message.Exn exn)
  | _, Some backtrace ->
    of_lazy_message (lazy (With_backtrace (Sexp (Exn.sexp_of_t exn), backtrace)))
;;

include Pretty_printer.Register_pp (struct
  type nonrec t = t

  let module_name = "Base.Info"
  let pp ppf t = Stdlib.Format.pp_print_string ppf (to_string_hum t)
end)

module Internal_repr = struct
  include Message

  let to_info = of_message
  let of_info = to_message
end