Source file automata.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
open Import
let hash_combine h accu = (accu * 65599) + h
module Ids : sig
module Id : sig
type t
val equal : t -> t -> bool
val zero : t
val hash : t -> int
val pp : t Fmt.t
module Hash_set : sig
type id := t
type t
val create : unit -> t
val mem : t -> id -> bool
val add : t -> id -> unit
val clear : t -> unit
end
end
type t
val create : unit -> t
val next : t -> Id.t
end = struct
module Id = struct
type t = int
module Hash_set = Hash_set
let equal = Int.equal
let zero = 0
let hash x = x
let pp = Fmt.int
end
type t = int ref
let create () = ref 0
let next t =
incr t;
!t
;;
end
module Id = Ids.Id
module Sem = struct
type t =
[ `Longest
| `Shortest
| `First
]
let equal = Poly.equal
let pp ch k =
Format.pp_print_string
ch
(match k with
| `Shortest -> "short"
| `Longest -> "long"
| `First -> "first")
;;
end
module Rep_kind = struct
type t =
[ `Greedy
| `Non_greedy
]
let pp fmt = function
| `Greedy -> Format.pp_print_string fmt "Greedy"
| `Non_greedy -> Format.pp_print_string fmt "Non_greedy"
;;
end
module Mark : sig
type t = private int
val compare : t -> t -> int
val equal : t -> t -> bool
val pp : t Fmt.t
val start : t
val prev : t -> t
val next : t -> t
val next2 : t -> t
val group_count : t -> int
val outside_range : t -> start_inclusive:t -> stop_inclusive:t -> bool
end = struct
type t = int
let equal = Int.equal
let compare = Int.compare
let pp = Format.pp_print_int
let start = 0
let prev x = pred x
let next x = succ x
let next2 x = x + 2
let group_count x = x / 2
let outside_range t ~start_inclusive ~stop_inclusive =
t < start_inclusive || t > stop_inclusive
;;
end
module Idx : sig
type t = private int
val pp : t Fmt.t
val to_int : t -> int
val unknown : t
val initial : t
val used : t -> bool
val make : int -> t
val equal : t -> t -> bool
end = struct
type t = int
let to_int x = x
let pp = Format.pp_print_int
let used t = t >= 0
let make x = x
let equal = Int.equal
let unknown = -1
let initial = 0
end
module Expr = struct
type t =
{ id : Id.t
; def : def
}
and def =
| Cst of Cset.t
| Alt of t list
| Seq of Sem.t * t * t
| Eps
| Rep of Rep_kind.t * Sem.t * t
| Mark of Mark.t
| Erase of Mark.t * Mark.t
| Before of Category.t
| After of Category.t
| Pmark of Pmark.t
let rec pp ch e =
let open Fmt in
match e.def with
| Cst l -> sexp ch "cst" Cset.pp l
| Alt l -> sexp ch "alt" (list pp) l
| Seq (k, e, e') -> sexp ch "seq" (triple Sem.pp pp pp) (k, e, e')
| Eps -> str ch "eps"
| Rep (_rk, k, e) -> sexp ch "rep" (pair Sem.pp pp) (k, e)
| Mark i -> sexp ch "mark" Mark.pp i
| Pmark i -> sexp ch "pmark" Pmark.pp i
| Erase (b, e) -> sexp ch "erase" (pair Mark.pp Mark.pp) (b, e)
| Before c -> sexp ch "before" Category.pp c
| After c -> sexp ch "after" Category.pp c
;;
let eps_expr = { id = Id.zero; def = Eps }
let mk ids def = { id = Ids.next ids; def }
let empty ids = mk ids (Alt [])
let cst ids s = if Cset.is_empty s then empty ids else mk ids (Cst s)
let eps ids = mk ids Eps
let rep ids kind sem x = mk ids (Rep (kind, sem, x))
let mark ids m = mk ids (Mark m)
let pmark ids i = mk ids (Pmark i)
let erase ids m m' = mk ids (Erase (m, m'))
let before ids c = mk ids (Before c)
let after ids c = mk ids (After c)
let alt ids = function
| [] -> empty ids
| [ c ] -> c
| l -> mk ids (Alt l)
;;
let seq ids (kind : Sem.t) x y =
match x.def, y.def with
| Alt [], _ -> x
| _, Alt [] -> y
| Eps, _ -> y
| _, Eps when Sem.equal kind `First -> x
| _ -> mk ids (Seq (kind, x, y))
;;
let is_eps expr =
match expr.def with
| Eps -> true
| _ -> false
;;
let rec rename ids x =
match x.def with
| Cst _ | Eps | Mark _ | Pmark _ | Erase _ | Before _ | After _ -> mk ids x.def
| Alt l -> mk ids (Alt (List.map ~f:(rename ids) l))
| Seq (k, y, z) -> mk ids (Seq (k, rename ids y, rename ids z))
| Rep (g, k, y) -> mk ids (Rep (g, k, rename ids y))
;;
end
type expr = Expr.t
include Expr
module Marks = struct
type t =
{ marks : (Mark.t * Idx.t) list
; pmarks : Pmark.Set.t
}
let equal { marks; pmarks } t =
List.equal
~eq:(fun (x, y) (x', y') -> Mark.equal x x' && Idx.equal y y')
marks
t.marks
&& Pmark.Set.equal pmarks t.pmarks
;;
let empty = { marks = []; pmarks = Pmark.Set.empty }
let hash_marks_offset =
let f acc ((a : Mark.t), (i : Idx.t)) =
hash_combine (a :> int) (hash_combine (i :> int) acc)
in
fun l init -> List.fold_left l ~init ~f
;;
let hash m accu = hash_marks_offset m.marks (hash_combine (Hashtbl.hash m.pmarks) accu)
let marks_set_idx =
let rec marks_set_idx idx marks =
match marks with
| [] -> []
| (a, idx') :: rem ->
if Idx.equal idx' Idx.unknown then (a, idx) :: marks_set_idx idx rem else marks
in
fun marks idx -> { marks with marks = marks_set_idx idx marks.marks }
;;
let filter t (b : Mark.t) (e : Mark.t) =
{ t with
marks =
List.filter t.marks ~f:(fun ((i : Mark.t), _) ->
Mark.outside_range i ~start_inclusive:b ~stop_inclusive:e)
}
;;
let set_mark t (i : Mark.t) =
{ t with marks = (i, Idx.unknown) :: List.remove_assq i t.marks }
;;
let set_pmark t i = { t with pmarks = Pmark.Set.add i t.pmarks }
let pp fmt { marks; pmarks } =
Format.pp_open_box fmt 1;
(match marks with
| [] -> ()
| _ :: _ ->
Format.fprintf
fmt
"@[<2>marks@ %a@]"
(Format.pp_print_list (fun fmt (a, i) ->
Format.fprintf fmt "%a-%a" Mark.pp a Idx.pp i))
marks);
(match Pmark.Set.to_list pmarks with
| [] -> ()
| pmarks ->
Format.fprintf fmt "@[<2>pmarks %a@]" (Format.pp_print_list Pmark.pp) pmarks);
Format.pp_close_box fmt ()
;;
end
module Status = struct
type t =
| Failed
| Match of Mark_infos.t * Pmark.Set.t
| Running
end
module Desc : sig
module E : sig
type t = private
| TSeq of Sem.t * t list * Expr.t
| TExp of Marks.t * Expr.t
| TMatch of Marks.t
val tmatch : Marks.t -> t
val tseq : Sem.t -> t list -> Expr.t -> t list -> t list
val initial : Expr.t -> t
val eps : Marks.t -> t
end
type t = E.t list
val set_idx : Idx.t -> t -> t
val hash : t -> int -> int
val equal : t -> t -> bool
val status : t -> Status.t
val first_match : t -> Marks.t option
val remove_matches : t -> t
val split_at_match : t -> t * t
end = struct
module E = struct
type t =
| TSeq of Sem.t * t list * Expr.t
| TExp of Marks.t * Expr.t
| TMatch of Marks.t
let tmatch marks = TMatch marks
let initial expr = TExp (Marks.empty, expr)
let eps marks = TExp (marks, eps_expr)
let rec equal_list l1 l2 = List.equal ~eq:equal l1 l2
and equal x y =
match x, y with
| TSeq (_, l1, e1), TSeq (_, l2, e2) -> Id.equal e1.id e2.id && equal_list l1 l2
| TExp (marks1, e1), TExp (marks2, e2) ->
Id.equal e1.id e2.id && Marks.equal marks1 marks2
| TMatch marks1, TMatch marks2 -> Marks.equal marks1 marks2
| _, _ -> false
;;
let rec hash (t : t) accu =
match t with
| TSeq (_, l, e) ->
hash_combine 0x172a1bce (hash_combine (Id.hash e.id) (hash_list l accu))
| TExp (marks, e) ->
hash_combine 0x2b4c0d77 (hash_combine (Id.hash e.id) (Marks.hash marks accu))
| TMatch marks -> hash_combine 0x1c205ad5 (Marks.hash marks accu)
and hash_list =
let f acc x = hash x acc in
fun l init -> List.fold_left l ~init ~f
;;
let tseq' kind x y =
match x with
| [] -> []
| [ TExp (marks, { def = Eps; _ }) ] -> [ TExp (marks, y) ]
| _ -> [ TSeq (kind, x, y) ]
;;
let tseq kind x y rem = tseq' kind x y @ rem
end
type t = E.t list
open E
let equal = E.equal_list
let hash = E.hash_list
let rec print_state_rec ch e (y : Expr.t) =
match e with
| TMatch marks -> Format.fprintf ch "@[<2>(Match@ %a)@]" Marks.pp marks
| TSeq (_kind, l', x) ->
Format.fprintf ch "@[<2>(Seq@ ";
print_state_lst ch l' x;
Format.fprintf ch "@ %a)@]" Expr.pp x
| TExp (marks, { def = Eps; _ }) ->
Format.fprintf ch "@[<2>(Exp@ %a@ (%a)@ (eps))@]" Id.pp y.id Marks.pp marks
| TExp (marks, x) ->
Format.fprintf ch "@[<2>(Exp@ %a@ (%a)@ %a)@]" Id.pp x.id Marks.pp marks Expr.pp x
and print_state_lst ch l y =
match l with
| [] -> Format.fprintf ch "()"
| e :: rem ->
print_state_rec ch e y;
List.iter rem ~f:(fun e ->
Format.fprintf ch "@ | ";
print_state_rec ch e y)
;;
let pp ch t = print_state_lst ch [ t ] { id = Id.zero; def = Eps }
let rec first_match = function
| [] -> None
| TMatch marks :: _ -> Some marks
| _ :: r -> first_match r
;;
let remove_matches =
List.filter ~f:(function
| TMatch _ -> false
| _ -> true)
;;
let split_at_match =
let rec split_at_match_rec l = function
| [] -> assert false
| TMatch _ :: r -> List.rev l, remove_matches r
| x :: r -> split_at_match_rec (x :: l) r
in
fun l -> split_at_match_rec [] l
;;
let status : _ -> Status.t = function
| [] -> Failed
| TMatch m :: _ -> Match (Mark_infos.make (m.marks :> (int * int) list), m.pmarks)
| _ -> Running
;;
let set_idx =
let rec f idx = function
| TMatch marks -> TMatch (Marks.marks_set_idx marks idx)
| TSeq (kind, l, x) -> TSeq (kind, set_idx idx l, x)
| TExp (marks, x) -> TExp (Marks.marks_set_idx marks idx, x)
and set_idx idx xs = List.map xs ~f:(f idx) in
set_idx
;;
let[@ocaml.warning "-32"] pp fmt t =
Format.fprintf fmt "[%a]" (Format.pp_print_list ~pp_sep:(Fmt.lit "; ") pp) t
;;
end
module E = Desc.E
module State = struct
type t =
{ idx : Idx.t
; category : Category.t
; desc : Desc.t
; mutable status : Status.t Option.Unboxed.t
; hash : int
}
let[@inline] idx t = t.idx
let dummy =
{ idx = Idx.unknown
; category = Category.dummy
; desc = []
; status = Option.Unboxed.none
; hash = -1
}
;;
let hash idx cat desc =
Desc.hash desc (hash_combine idx (hash_combine (Category.to_int cat) 0))
land 0x3FFFFFFF
;;
let mk idx cat desc =
{ idx
; category = cat
; desc
; status = Option.Unboxed.none
; hash = hash (idx :> int) cat desc
}
;;
let create cat e = mk Idx.initial cat [ E.initial e ]
let equal { idx; category; desc; status = _; hash } t =
Int.equal hash t.hash
&& Idx.equal idx t.idx
&& Category.equal category t.category
&& Desc.equal desc t.desc
;;
let status s =
let status = s.status in
match Option.Unboxed.is_some status with
| true -> Option.Unboxed.value_exn status
| false ->
let st = Desc.status s.desc in
s.status <- Option.Unboxed.some st;
st
;;
module Table = Hashtbl.Make (struct
type nonrec t = t
let equal = equal
let hash t = t.hash
end)
end
module Working_area = struct
type t =
{ mutable ids : Bit_vector.t
; seen : Id.Hash_set.t
}
let create () = { ids = Bit_vector.create_zero 1; seen = Id.Hash_set.create () }
let index_count w = Bit_vector.length w.ids
let rec mark_used_indices tbl =
List.iter ~f:(fun (e : E.t) ->
match e with
| TSeq (_, l, _) -> mark_used_indices tbl l
| TExp (marks, _) | TMatch marks ->
List.iter marks.marks ~f:(fun (_, i) ->
if Idx.used i then Bit_vector.set tbl (i :> int) true))
;;
let rec find_free tbl idx len =
if idx = len || not (Bit_vector.get tbl idx) then idx else find_free tbl (idx + 1) len
;;
let free_index t l =
Bit_vector.reset_zero t.ids;
mark_used_indices t.ids l;
let len = Bit_vector.length t.ids in
let idx = find_free t.ids 0 len in
if idx = len then t.ids <- Bit_vector.create_zero (2 * len);
Idx.make idx
;;
end
let remove_duplicates =
let rec loop seen (l : Desc.t) y =
match l with
| [] -> []
| (TMatch _ as x) :: _ ->
[ x ]
| TSeq (kind, l, x) :: r ->
let l = loop seen l x in
let r = loop seen r y in
E.tseq kind l x r
| (TExp (_marks, { def = Eps; _ }) as e) :: r ->
if Id.Hash_set.mem seen y.id
then loop seen r y
else (
Id.Hash_set.add seen y.id;
e :: loop seen r y)
| (TExp (_marks, x) as e) :: r ->
if Id.Hash_set.mem seen x.id
then loop seen r y
else (
Id.Hash_set.add seen x.id;
e :: loop seen r y)
in
fun seen l y ->
Id.Hash_set.clear seen;
loop seen l y
;;
type ctx =
{ c : Cset.c
; prev_cat : Category.t
; next_cat : Category.t
}
let rec delta_expr ({ c; _ } as ctx) marks (x : Expr.t) rem =
match x.def with
| Cst s -> if Cset.mem c s then E.eps marks :: rem else rem
| Alt l -> delta_alt ctx marks l rem
| Seq (kind, y, z) ->
let y = delta_expr ctx marks y [] in
delta_seq ctx kind y z rem
| Rep (rep_kind, kind, y) ->
let y, marks' =
let y = delta_expr ctx marks y [] in
match Desc.first_match y with
| None -> y, marks
| Some marks -> Desc.remove_matches y, marks
in
(match rep_kind with
| `Greedy -> E.tseq kind y x (E.tmatch marks' :: rem)
| `Non_greedy -> E.tmatch marks :: E.tseq kind y x rem)
| Eps -> E.tmatch marks :: rem
| Mark i -> E.tmatch (Marks.set_mark marks i) :: rem
| Pmark i -> E.tmatch (Marks.set_pmark marks i) :: rem
| Erase (b, e) -> E.tmatch (Marks.filter marks b e) :: rem
| Before cat ->
if Category.intersect ctx.next_cat cat then E.tmatch marks :: rem else rem
| After cat ->
if Category.intersect ctx.prev_cat cat then E.tmatch marks :: rem else rem
and delta_alt ctx marks l rem =
match l with
| [] -> rem
| y :: r -> delta_expr ctx marks y (delta_alt ctx marks r rem)
and delta_seq ctx (kind : Sem.t) y z rem =
match Desc.first_match y with
| None -> E.tseq kind y z rem
| Some marks ->
(match kind with
| `Longest -> E.tseq kind (Desc.remove_matches y) z (delta_expr ctx marks z rem)
| `Shortest -> delta_expr ctx marks z (E.tseq kind (Desc.remove_matches y) z rem)
| `First ->
let y, y' = Desc.split_at_match y in
E.tseq kind y z (delta_expr ctx marks z (E.tseq kind y' z rem)))
;;
let rec delta_e ctx marks (x : E.t) rem =
match x with
| TSeq (kind, y, z) ->
let y = delta_desc ctx marks y [] in
delta_seq ctx kind y z rem
| TExp (marks, e) -> delta_expr ctx marks e rem
| TMatch _ -> x :: rem
and delta_desc ctx marks l rem =
match l with
| [] -> rem
| y :: r -> delta_e ctx marks y (delta_desc ctx marks r rem)
;;
let delta (tbl_ref : Working_area.t) next_cat char (st : State.t) =
let expr =
let prev_cat = st.category in
let ctx = { c = char; next_cat; prev_cat } in
remove_duplicates tbl_ref.seen (delta_desc ctx Marks.empty st.desc []) Expr.eps_expr
in
let idx = Working_area.free_index tbl_ref expr in
let expr = Desc.set_idx idx expr in
State.mk idx next_cat expr
;;