package ocamlgraph

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file blocks.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(** Common implementation to persistent and imperative graphs. *)

open Sig
open Util

let first_value_for_cpt_vertex = 0
let cpt_vertex = ref first_value_for_cpt_vertex
(* global counter for abstract vertex *)

(* [max_cpt t1 t2] returns the maximum of [t1] and [t2] wrt the total ordering
   induced by tags creation. This ordering is defined as follow:
   forall tags t1 t2,
   t1 <= t2 iff
   t1 is before t2 in the finite sequence
   [0; 1; ..; max_int; min_int; min_int-1; -1] *)
let max_cpt c1 c2 = max (c1 + min_int) (c2 + min_int) - min_int

(* This function must be called after the unserialisation of any abstract
   vertex if you want to create new vertices. *)
let after_unserialization serialized_cpt_vertex =
  cpt_vertex := max_cpt serialized_cpt_vertex !cpt_vertex

(* ************************************************************************* *)
(** {2 Association table builder} *)
(* ************************************************************************* *)

(** Common signature to an imperative/persistent association table *)
module type HM = sig
  type 'a return
  type 'a t
  type key
  val create : ?size:int -> unit -> 'a t
  val create_from : 'a t -> 'a t
  val empty : 'a return
  val clear: 'a t -> unit
  val is_empty : 'a t -> bool
  val add : key -> 'a -> 'a t -> 'a t
  val remove : key -> 'a t -> 'a t
  val mem : key -> 'a t -> bool
  val find : key -> 'a t -> 'a
  val find_and_raise : key -> 'a t -> string -> 'a
  (** [find_and_raise k t s] is equivalent to [find k t] but
      raises [Invalid_argument s] when [find k t] raises [Not_found] *)

  val iter : (key -> 'a -> unit) -> 'a t -> unit
  val map : (key -> 'a -> key * 'a) -> 'a t -> 'a t
  val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  val copy : 'a t -> 'a t
end

module type TBL_BUILDER = functor(X: COMPARABLE) -> HM with type key = X.t

(** [HM] implementation using hashtbl. *)
module Make_Hashtbl(X: COMPARABLE) = struct

  include Hashtbl.Make(X)

  type 'a return = unit
  let empty = ()
  (* never call and not visible for the user thank's to signature
     constraints *)

  let create_from h = create (length h)
  let create ?(size=97) () = create size

  let is_empty h = (length h = 0)

  let find_and_raise k h s = try find h k with Not_found -> invalid_arg s

  let map f h =
    let h' = create_from h  in
    iter (fun k v -> let k, v = f k v in add h' k v) h;
    h'

  let add k v h = replace h k v; h
  let remove k h = remove h k; h
  let mem k h = mem h k
  let find k h = find h k

end

(** [HM] implementation using map *)
module Make_Map(X: COMPARABLE) = struct
  include Map.Make(X)
  type 'a return = 'a t
  let create ?size:_ () = assert false
  (* never call and not visible for the user thank's to
     signature constraints *)
  let create_from _ = empty
  let copy m = m
  let map f m = fold (fun k v m -> let k, v = f k v in add k v m) m empty
  let find_and_raise k h s = try find k h with Not_found -> invalid_arg s
  let clear _ = assert false
  (* never call and not visible for the user thank's to
     signature constraints *)
end

(* ************************************************************************* *)
(** {2 Blocks builder} *)
(* ************************************************************************* *)

(** Common implementation to all (directed) graph implementations. *)
module Minimal(S: Set.S)(HM: HM) = struct

  type vertex = HM.key

  let is_directed = true
  let empty = HM.empty
  let create = HM.create
  let is_empty = HM.is_empty
  let copy = HM.copy
  let clear = HM.clear

  let nb_vertex g = HM.fold (fun _ _ -> succ) g 0
  let nb_edges g = HM.fold (fun _ s n -> n + S.cardinal s) g 0
  let out_degree g v =
    S.cardinal
      (try HM.find v g with Not_found -> invalid_arg "[ocamlgraph] out_degree")

  let mem_vertex g v = HM.mem v g

  let unsafe_add_vertex g v = HM.add v S.empty g
  let unsafe_add_edge g v1 v2 = HM.add v1 (S.add v2 (HM.find v1 g)) g

  let add_vertex g v = if HM.mem v g then g else unsafe_add_vertex g v

  let iter_vertex f = HM.iter (fun v _ -> f v)
  let fold_vertex f = HM.fold (fun v _ -> f v)

end

(** All the predecessor operations from the iterators on the edges *)
module Pred
    (S: sig
       module PV: COMPARABLE
       module PE: EDGE with type vertex = PV.t
       type t
       val mem_vertex : PV.t -> t -> bool
       val iter_edges : (PV.t -> PV.t -> unit) -> t -> unit
       val fold_edges : (PV.t -> PV.t -> 'a -> 'a) -> t -> 'a -> 'a
       val iter_edges_e : (PE.t -> unit) -> t -> unit
       val fold_edges_e : (PE.t -> 'a -> 'a) -> t -> 'a -> 'a
     end) =
struct

  open S

  let iter_pred f g v =
    if not (mem_vertex v g) then invalid_arg "[ocamlgraph] iter_pred";
    iter_edges (fun v1 v2 -> if PV.equal v v2 then f v1) g

  let fold_pred f g v =
    if not (mem_vertex v g) then invalid_arg "[ocamlgraph] fold_pred";
    fold_edges (fun v1 v2 a -> if PV.equal v v2 then f v1 a else a) g

  let pred g v = fold_pred (fun v l -> v :: l) g v []

  let in_degree g v =
    if not (mem_vertex v g) then invalid_arg "[ocamlgraph] in_degree";
    fold_pred (fun _ n -> n + 1) g v 0

  let iter_pred_e f g v =
    if not (mem_vertex v g) then invalid_arg "[ocamlgraph] iter_pred_e";
    iter_edges_e (fun e -> if PV.equal v (PE.dst e) then f e) g

  let fold_pred_e f g v =
    if not (mem_vertex v g) then invalid_arg "[ocamlgraph] fold_pred_e";
    fold_edges_e (fun e a -> if PV.equal v (PE.dst e) then f e a else a) g

  let pred_e g v = fold_pred_e (fun v l -> v :: l) g v []

end

(** Common implementation to all the unlabeled (directed) graphs. *)
module Unlabeled(V: COMPARABLE)(HM: HM with type key = V.t) = struct

  module S = Set.Make(V)

  module E = struct
    type vertex = V.t
    include OTProduct(V)(V)
    let src = fst
    let dst = snd
    type label = unit
    let label _ = ()
    let create v1 () v2 = v1, v2
  end
  type edge = E.t

  let mem_edge g v1 v2 =
    try S.mem v2 (HM.find v1 g)
    with Not_found -> false

  let mem_edge_e g (v1, v2) = mem_edge g v1 v2

  let find_edge g v1 v2 = if mem_edge g v1 v2 then v1, v2 else raise Not_found
  let find_all_edges g v1 v2 = try [ find_edge g v1 v2 ] with Not_found -> []

  let unsafe_remove_edge g v1 v2 = HM.add v1 (S.remove v2 (HM.find v1 g)) g
  let unsafe_remove_edge_e g (v1, v2) = unsafe_remove_edge g v1 v2

  let remove_edge g v1 v2 =
    if not (HM.mem v2 g) then invalid_arg "[ocamlgraph] remove_edge";
    HM.add
      v1 (S.remove v2 (HM.find_and_raise v1 g "[ocamlgraph] remove_edge")) g

  let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  let iter_succ f g v =
    S.iter f (HM.find_and_raise v g "[ocamlgraph] iter_succ")

  let fold_succ f g v =
    S.fold f (HM.find_and_raise v g "[ocamlgraph] fold_succ")

  let iter_succ_e f g v = iter_succ (fun v2 -> f (v, v2)) g v
  let fold_succ_e f g v = fold_succ (fun v2 -> f (v, v2)) g v

  let succ g v = S.elements (HM.find_and_raise v g "[ocamlgraph] succ")
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f g =
    let module MV = Util.Memo(V) in
    let f = MV.memo f in
    HM.map (fun v s -> f v, S.fold (fun v s -> S.add (f v) s) s S.empty) g

  module I = struct
    type t = S.t HM.t
    module PV = V
    module PE = E
    let iter_edges f = HM.iter (fun v -> S.iter (f v))
    let fold_edges f = HM.fold (fun v -> S.fold (f v))
    let iter_edges_e f = iter_edges (fun v1 v2 -> f (v1, v2))
    let fold_edges_e f = fold_edges (fun v1 v2 a -> f (v1, v2) a)
  end
  include I

  include Pred(struct include I let mem_vertex = HM.mem end)

end

(** Common implementation to all the labeled (directed) graphs. *)
module Labeled(V: COMPARABLE)(E: ORDERED_TYPE)(HM: HM with type key = V.t) =
struct

  module VE = OTProduct(V)(E)
  module S = Set.Make(VE)

  module E = struct
    type vertex = V.t
    type label = E.t
    type t = vertex * label * vertex
    let src (v, _, _) = v
    let dst (_, _, v) = v
    let label (_, l, _) = l
    let create v1 l v2 = v1, l, v2
    module C = OTProduct(V)(VE)
    let compare (x1, x2, x3) (y1, y2, y3) =
      C.compare (x1, (x3, x2)) (y1, (y3, y2))
  end
  type edge = E.t

  let mem_edge g v1 v2 =
    try S.exists (fun (v2', _) -> V.equal v2 v2') (HM.find v1 g)
    with Not_found -> false

  let mem_edge_e g (v1, l, v2) =
    try
      let ve = v2, l in
      S.exists (fun ve' -> VE.compare ve ve' = 0) (HM.find v1 g)
    with Not_found ->
      false

  exception Found of edge
  let find_edge g v1 v2 =
    try
      S.iter
        (fun (v2', l) -> if V.equal v2 v2' then raise (Found (v1, l, v2')))
        (HM.find v1 g);
      raise Not_found
    with Found e ->
      e

  let find_all_edges g v1 v2 =
    try
      S.fold
        (fun (v2', l) acc ->
           if V.equal v2 v2' then (v1, l, v2') :: acc else acc)
        (HM.find v1 g)
        []
    with Not_found ->
      []

  let unsafe_remove_edge g v1 v2 =
    HM.add
      v1
      (S.filter (fun (v2', _) -> not (V.equal v2 v2')) (HM.find v1 g))
      g

  let unsafe_remove_edge_e g (v1, l, v2) =
    HM.add v1 (S.remove (v2, l) (HM.find v1 g)) g

  let remove_edge g v1 v2 =
    if not (HM.mem v2 g) then invalid_arg "[ocamlgraph] remove_edge";
    HM.add
      v1
      (S.filter
         (fun (v2', _) -> not (V.equal v2 v2'))
         (HM.find_and_raise v1 g "[ocamlgraph] remove_edge"))
      g

  let remove_edge_e g (v1, l, v2) =
    if not (HM.mem v2 g) then invalid_arg "[ocamlgraph] remove_edge_e";
    HM.add
      v1
      (S.remove (v2, l) (HM.find_and_raise v1 g "[ocamlgraph] remove_edge_e"))
      g

  let iter_succ f g v =
    S.iter (fun (w, _) -> f w) (HM.find_and_raise v g "[ocamlgraph] iter_succ")
  let fold_succ f g v =
    S.fold (fun (w, _) -> f w) (HM.find_and_raise v g "[ocamlgraph] fold_succ")

  let iter_succ_e f g v =
    S.iter
      (fun (w, l) -> f (v, l, w))
      (HM.find_and_raise v g "[ocamlgraph] iter_succ_e")

  let fold_succ_e f g v =
    S.fold
      (fun (w, l) -> f (v, l, w))
      (HM.find_and_raise v g "[ocamlgraph] fold_succ_e")

  let succ g v = fold_succ (fun w l -> w :: l) g v []
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f g =
    let module MV = Util.Memo(V) in
    let f = MV.memo f in
    HM.map
      (fun v s -> f v, S.fold (fun (v, l) s -> S.add (f v, l) s) s S.empty) g

  module I = struct
    type t = S.t HM.t
    module PV = V
    module PE = E
    let iter_edges f = HM.iter (fun v -> S.iter (fun (w, _) -> f v w))
    let fold_edges f = HM.fold (fun v -> S.fold (fun (w, _) -> f v w))
    let iter_edges_e f =
      HM.iter (fun v -> S.iter (fun (w, l) -> f (v, l, w)))
    let fold_edges_e f =
      HM.fold (fun v -> S.fold (fun (w, l) -> f (v, l, w)))
  end
  include I

  include Pred(struct include I let mem_vertex = HM.mem end)

end

(** The vertex module and the vertex table for the concrete graphs. *)
module ConcreteVertex(F : TBL_BUILDER)(V: COMPARABLE) = struct
  module V = struct
    include V
    type label = t
    let label v = v
    let create v = v
  end
  module HM = F(V)
end

module Make_Abstract
    (G: sig
       module HM: HM
       module S: Set.S
       include G with type t = S.t HM.t and type V.t = HM.key
       val remove_edge: t -> vertex -> vertex -> t
       val remove_edge_e: t -> edge -> t
       (* val unsafe_add_vertex: t -> vertex -> t *) (* Was unused *)
       val unsafe_add_edge: t -> vertex -> S.elt -> t
       val unsafe_remove_edge: t -> vertex -> vertex -> t
       val unsafe_remove_edge_e: t -> edge -> t
       val create: ?size:int -> unit -> t
       val clear: t -> unit
     end) =
struct

  module I = struct
    type t = { edges : G.t; mutable size : int }
    (* BE CAREFUL: [size] is only mutable in the imperative version. As
       there is no extensible records in current ocaml version, and for
       genericity purpose, [size] is mutable in both imperative and
       persistent implementations.
       Do not modify size in the persistent implementation! *)

    type vertex = G.vertex
    type edge = G.edge

    module PV = G.V
    module PE = G.E

    let iter_edges f g = G.iter_edges f g.edges
    let fold_edges f g = G.fold_edges f g.edges
    let iter_edges_e f g = G.iter_edges_e f g.edges
    let fold_edges_e f g = G.fold_edges_e f g.edges
    let mem_vertex v g = G.mem_vertex g.edges v
    let create ?size () = { edges = G.create ?size (); size = 0 }
    let clear g = G.clear g.edges; g.size <- 0
  end
  include I

  include Pred(I)

  (* optimisations *)

  let is_empty g = g.size = 0
  let nb_vertex g = g.size

  (* redefinitions *)
  module V = G.V
  module E = G.E
  module HM = G.HM
  module S = G.S

  let unsafe_add_edge = G.unsafe_add_edge
  let unsafe_remove_edge = G.unsafe_remove_edge
  let unsafe_remove_edge_e = G.unsafe_remove_edge_e
  let is_directed = G.is_directed

  let remove_edge g = G.remove_edge g.edges
  let remove_edge_e g = G.remove_edge_e g.edges

  let out_degree g = G.out_degree g.edges
  let in_degree g = G.in_degree g.edges

  let nb_edges g = G.nb_edges g.edges
  let succ g = G.succ g.edges
  let mem_vertex g = G.mem_vertex g.edges
  let mem_edge g = G.mem_edge g.edges
  let mem_edge_e g = G.mem_edge_e g.edges
  let find_edge g = G.find_edge g.edges
  let find_all_edges g = G.find_all_edges g.edges

  let iter_vertex f g = G.iter_vertex f g.edges
  let fold_vertex f g = G.fold_vertex f g.edges
  let iter_succ f g = G.iter_succ f g.edges
  let fold_succ f g = G.fold_succ f g.edges
  let succ_e g = G.succ_e g.edges
  let iter_succ_e f g = G.iter_succ_e f g.edges
  let fold_succ_e f g = G.fold_succ_e f g.edges
  let map_vertex f g = { g with edges = G.map_vertex f g.edges }

  (* reimplementation *)

  let copy g =
    let h = HM.create () in
    let vertex v =
      try
        HM.find v h
      with Not_found ->
        let v' = V.create (V.label v) in
        let h' = HM.add v v' h in
        assert (h == h');
        v'
    in
    map_vertex vertex g

end

(** Support for explicitly maintaining edge set of
    predecessors.  Crucial for algorithms that do a lot of backwards
    traversal. *)

module BidirectionalMinimal(S:Set.S)(HM:HM) = struct

  type vertex = HM.key

  let is_directed = true
  let empty = HM.empty
  let create = HM.create
  let clear = HM.clear
  let is_empty = HM.is_empty
  let copy = HM.copy

  let nb_vertex g = HM.fold (fun _ _ -> succ) g 0
  let nb_edges g = HM.fold (fun _ (_,s) n -> n + S.cardinal s) g 0
  let out_degree g v =
    S.cardinal
      (snd (try HM.find v g
            with Not_found -> invalid_arg "[ocamlgraph] out_degree"))

  let mem_vertex g v = HM.mem v g

  let unsafe_add_vertex g v = HM.add v (S.empty, S.empty) g
  let add_vertex g v = if HM.mem v g then g else unsafe_add_vertex g v

  let iter_vertex f = HM.iter (fun v _ -> f v)
  let fold_vertex f = HM.fold (fun v _ -> f v)

end

module BidirectionalUnlabeled(V:COMPARABLE)(HM:HM with type key = V.t) = struct

  module S = Set.Make(V)

  module E = struct
    type vertex = V.t
    include OTProduct(V)(V)
    let src = fst
    let dst = snd
    type label = unit
    let label _ = ()
    let create v1 () v2 = v1, v2
  end
  type edge = E.t

  let mem_edge g v1 v2 =
    try S.mem v2 (snd (HM.find v1 g))
    with Not_found -> false

  let mem_edge_e g (v1,v2) = mem_edge g v1 v2

  let find_edge g v1 v2 = if mem_edge g v1 v2 then v1, v2 else raise Not_found
  let find_all_edges g v1 v2 = try [ find_edge g v1 v2 ] with Not_found -> []

  let unsafe_remove_edge g v1 v2 =
    let in_set, out_set = HM.find v1 g in
    let g = HM.add v1 (in_set, S.remove v2 out_set) g in
    let in_set, out_set = HM.find v2 g in
    HM.add v2 (S.remove v1 in_set, out_set) g

  let unsafe_remove_edge_e g (v1,v2) = unsafe_remove_edge g v1 v2

  let remove_edge g v1 v2 =
    if not (HM.mem v2 g && HM.mem v1 g) then
      invalid_arg "[ocamlgraph] remove_edge";
    unsafe_remove_edge g v1 v2

  let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  let iter_succ f g v =
    S.iter f (snd (HM.find_and_raise v g "[ocamlgraph] iter_succ"))

  let fold_succ f g v =
    S.fold f (snd (HM.find_and_raise v g "[ocamlgraph] fold_succ"))

  let iter_succ_e f g v = iter_succ (fun v2 -> f (v, v2)) g v
  let fold_succ_e f g v = fold_succ (fun v2 -> f (v, v2)) g v

  let succ g v = S.elements (snd (HM.find_and_raise v g "[ocamlgraph] succ"))
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f g =
    let module MV = Util.Memo(V) in
    let f = MV.memo f in
    HM.map
      (fun v (s1,s2) ->
         f v,
         (S.fold (fun v s -> S.add (f v) s) s1 S.empty,
          S.fold (fun v s -> S.add (f v) s) s2 S.empty))
      g

  module I = struct
    (* we keep sets for both incoming and outgoing edges *)
    type t = (S.t (* incoming *) * S.t (* outgoing *)) HM.t
    module PV = V
    module PE = E
    let iter_edges f = HM.iter (fun v (_, outset) -> S.iter (f v) outset)
    let fold_edges f = HM.fold (fun v (_, outset) -> S.fold (f v) outset)
    let iter_edges_e f = iter_edges (fun v1 v2 -> f (v1, v2))
    let fold_edges_e f = fold_edges (fun v1 v2 a -> f (v1, v2) a)
  end
  include I

  let iter_pred f g v =
    S.iter f (fst (HM.find_and_raise v g "[ocamlgraph] iter_pred"))

  let fold_pred f g v =
    S.fold f (fst (HM.find_and_raise v g "[ocamlgraph] fold_pred"))

  let pred g v = S.elements (fst (HM.find_and_raise v g "[ocamlgraph] pred"))

  let in_degree g v =
    S.cardinal
      (fst (try HM.find v g
            with Not_found -> invalid_arg "[ocamlgraph] in_degree"))

  let iter_pred_e f g v = iter_pred (fun v2 -> f (v2, v)) g v
  let fold_pred_e f g v = fold_pred (fun v2 -> f (v2, v)) g v

  let pred_e g v = fold_pred_e (fun e l -> e :: l) g v []

end

module BidirectionalLabeled
    (V:COMPARABLE)(E:ORDERED_TYPE)(HM:HM with type key = V.t) =
struct

  module VE = OTProduct(V)(E)
  module S = Set.Make(VE)

  module E = struct
    type vertex = V.t
    type label = E.t
    type t = vertex * label * vertex
    let src (v, _, _) = v
    let dst (_, _, v) = v
    let label (_, l, _) = l
    let create v1 l v2 = v1, l, v2
    module C = OTProduct(V)(VE)
    let compare (x1, x2, x3) (y1, y2, y3) =
      C.compare (x1, (x3, x2)) (y1, (y3, y2))
  end
  type edge = E.t

  let mem_edge g v1 v2 =
    try S.exists (fun (v2', _) -> V.equal v2 v2') (snd (HM.find v1 g))
    with Not_found -> false

  let mem_edge_e g (v1, l, v2) =
    try
      let ve = v2, l in
      S.exists (fun ve' -> VE.compare ve ve' = 0) (snd (HM.find v1 g))
    with Not_found ->
      false

  exception Found of edge
  let find_edge g v1 v2 =
    try
      S.iter
        (fun (v2', l) -> if V.equal v2 v2' then raise (Found (v1, l, v2')))
        (snd (HM.find v1 g));
      raise Not_found
    with Found e ->
      e

  let find_all_edges g v1 v2 =
    try
      S.fold
        (fun (v2', l) acc ->
           if V.equal v2 v2' then (v1, l, v2') :: acc else acc)
        (snd (HM.find v1 g))
        []
    with Not_found ->
      []

  let unsafe_remove_edge g v1 v2 =
    let in_set, out_set = HM.find v1 g in
    let del v set = S.filter (fun (v', _) -> not (V.equal v v')) set in
    let g = HM.add v1 (in_set, del v2 out_set) g in
    let in_set, out_set = HM.find v2 g in
    HM.add v2 (del v1 in_set, out_set) g

  let unsafe_remove_edge_e g (v1, l, v2) =
    let in_set, out_set = HM.find v1 g in
    let g = HM.add v1 (in_set, S.remove (v2, l) out_set) g in
    let in_set, out_set = HM.find v2 g in
    HM.add v2 (S.remove (v1, l) in_set, out_set) g

  let remove_edge g v1 v2 =
    (*    if not (HM.mem v2 g) then invalid_arg "[ocamlgraph] remove_edge";*)
    let in_set, out_set = HM.find_and_raise v1 g "[ocamlgraph] remove_edge" in
    let del v set = S.filter (fun (v', _) -> not (V.equal v v')) set in
    let g = HM.add v1 (in_set, del v2 out_set) g in
    let in_set, out_set = HM.find_and_raise v2 g "[ocamlgraph] remove_edge" in
    HM.add v2 (del v1 in_set, out_set) g

  let remove_edge_e g (v1, l, v2) =
    (*    if not (HM.mem v2 g) then invalid_arg "[ocamlgraph] remove_edge_e";*)
    let in_set, out_set = HM.find_and_raise v1 g "[ocamlgraph] remove_edge_e" in
    let g = HM.add v1 (in_set, S.remove (v2, l) out_set) g in
    let in_set, out_set = HM.find_and_raise v2 g "[ocamlgraph] remove_edge_e" in
    HM.add v2 (S.remove (v1, l) in_set, out_set) g

  let iter_succ f g v =
    S.iter
      (fun (w, _) -> f w)
      (snd (HM.find_and_raise v g "[ocamlgraph] iter_succ"))

  let fold_succ f g v =
    S.fold
      (fun (w, _) -> f w)
      (snd (HM.find_and_raise v g "[ocamlgraph] fold_succ"))

  let iter_succ_e f g v =
    S.iter
      (fun (w, l) -> f (v, l, w))
      (snd (HM.find_and_raise v g "[ocamlgraph] iter_succ_e"))

  let fold_succ_e f g v =
    S.fold
      (fun (w, l) -> f (v, l, w))
      (snd (HM.find_and_raise v g "[ocamlgraph] fold_succ_e"))

  let succ g v = fold_succ (fun w l -> w :: l) g v []
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f g =
    let module MV = Util.Memo(V) in
    let f = MV.memo f in
    HM.map
      (fun v (s1,s2) ->
         f v,
         (S.fold (fun (v, l) s -> S.add (f v, l) s) s1 S.empty,
          S.fold (fun (v, l) s -> S.add (f v, l) s) s2 S.empty))
    g

  module I = struct
    type t = (S.t * S.t) HM.t
    module PV = V
    module PE = E
    let iter_edges f = HM.iter (fun v (_,outset) ->
        S.iter (fun (w, _) -> f v w) outset)
    let fold_edges f = HM.fold (fun v (_,outset) ->
        S.fold (fun (w, _) -> f v w) outset)
    let iter_edges_e f = HM.iter (fun v (_,outset) ->
        S.iter (fun (w, l) -> f (v, l, w)) outset)
    let fold_edges_e f = HM.fold (fun v (_,outset) ->
        S.fold (fun (w, l) -> f (v, l, w)) outset)
  end
  include I

  let iter_pred f g v =
    S.iter
      (fun (w, _) -> f w)
      (fst (HM.find_and_raise v g "[ocamlgraph] iter_pred"))

  let fold_pred f g v =
    S.fold
      (fun (w, _) -> f w)
      (fst (HM.find_and_raise v g "[ocamlgraph] fold_pred"))

  let in_degree g v =
    S.cardinal
      (fst (try HM.find v g
            with Not_found -> invalid_arg "[ocamlgraph] in_degree"))

  let iter_pred_e f g v =
    S.iter
      (fun (w, l) -> f (w, l, v))
      (fst (HM.find_and_raise v g "[ocamlgraph] iter_pred_e"))

  let fold_pred_e f g v =
    S.fold
      (fun (w, l) -> f (w, l, v))
      (fst (HM.find_and_raise v g "[ocamlgraph] fold_pred_e"))

  let pred g v = fold_pred (fun w l -> w :: l) g v []
  let pred_e g v = fold_pred_e (fun e l -> e :: l) g v []

end

(** Build persistent (resp. imperative) graphs from a persistent (resp.
    imperative) association table *)
module Make(F : TBL_BUILDER) = struct

  module Digraph = struct

    module Concrete(V: COMPARABLE) = struct

      include ConcreteVertex(F)(V)
      include Unlabeled(V)(HM)
      include Minimal(S)(HM)

      let add_edge g v1 v2 =
        if mem_edge g v1 v2 then g
        else
          let g = add_vertex g v1 in
          let g = add_vertex g v2 in
          unsafe_add_edge g v1 v2

      let add_edge_e g (v1, v2) = add_edge g v1 v2

    end

    module ConcreteBidirectional(V: COMPARABLE) = struct

      include ConcreteVertex(F)(V)
      include BidirectionalUnlabeled(V)(HM)
      include BidirectionalMinimal(S)(HM)

      let unsafe_add_edge g v1 v2 =
        let find v g = try HM.find v g with Not_found -> S.empty, S.empty in
        let in_set, out_set = find v1 g in
        let g = HM.add v1 (in_set,S.add v2 out_set) g in
        let in_set, out_set = find v2 g in
        HM.add v2 (S.add v1 in_set,out_set) g

      let add_edge g v1 v2 =
        if mem_edge g v1 v2 then g
        else unsafe_add_edge g v1 v2

      let add_edge_e g (v1, v2) = add_edge g v1 v2

    end

    module ConcreteLabeled(V: COMPARABLE)(Edge: ORDERED_TYPE_DFT) = struct

      include ConcreteVertex(F)(V)
      include Labeled(V)(Edge)(HM)
      include Minimal(S)(HM)

      let add_edge_e g (v1, l, v2 as e) =
        if mem_edge_e g e then g
        else
          let g = add_vertex g v1 in
          let g = add_vertex g v2 in
          unsafe_add_edge g v1 (v2, l)

      let add_edge g v1 v2 = add_edge_e g (v1, Edge.default, v2)

    end

    module ConcreteBidirectionalLabeled
        (V: COMPARABLE)(Edge: ORDERED_TYPE_DFT) =
    struct

      include ConcreteVertex(F)(V)
      include BidirectionalLabeled(V)(Edge)(HM)
      include BidirectionalMinimal(S)(HM)

      let unsafe_add_edge_e g (v1, l, v2) =
        let find v g = try HM.find v g with Not_found -> S.empty, S.empty in
        let in_set, out_set = find v1 g in
        let g = HM.add v1 (in_set,S.add (v2,l) out_set) g in
        let in_set, out_set = find v2 g in
        HM.add v2 (S.add (v1,l) in_set,out_set) g

      let add_edge_e g e = if mem_edge_e g e then g else unsafe_add_edge_e g e

      let add_edge g v1 v2 = add_edge_e g (v1, Edge.default, v2)

    end

    module Abstract(V: VERTEX) = struct
      module G = struct
        module V = V
        module HM = F(V)
        include Unlabeled(V)(HM)
        include Minimal(S)(HM)
      end
      include Make_Abstract(G)
    end

    module AbstractLabeled(V: VERTEX)(E: ORDERED_TYPE_DFT) = struct
      module G = struct
        module V = V
        module HM = F(V)
        include Labeled(V)(E)(HM)
        include Minimal(S)(HM)
      end
      include Make_Abstract(G)
    end

  end

end

(** Implementation of undirected graphs from implementation of directed
    graphs. *)
module Graph
    (G: sig
       include Sig.G
       val create: ?size:int -> unit -> t
       val clear: t -> unit
       val copy: t -> t
       type return
       val add_vertex: t -> vertex -> return
       val remove_vertex: t -> vertex -> return
     end) =
struct

  include G

  let is_directed = false

  (* Redefine iterators and [nb_edges]. *)

  let iter_edges f =
    iter_edges (fun v1 v2 -> if V.compare v1 v2 >= 0 then f v1 v2)

  let fold_edges f =
    fold_edges
      (fun v1 v2 acc -> if V.compare v1 v2 >= 0 then f v1 v2 acc else acc)

  let iter_edges_e f =
    iter_edges_e (fun e -> if V.compare (E.src e) (E.dst e) >= 0 then f e)

  let fold_edges_e f =
    fold_edges_e
      (fun e acc ->
         if V.compare (E.src e) (E.dst e) >= 0 then f e acc else acc)

  let nb_edges g = fold_edges_e (fun _ -> (+) 1) g 0

  (* Redefine operations on predecessors:
     predecessors are successors in an undirected graph. *)

  let pred = succ
  let in_degree = out_degree
  let iter_pred = iter_succ
  let fold_pred = fold_succ
  let pred_e = succ_e
  let iter_pred_e = iter_succ_e
  let fold_pred_e = fold_succ_e

end

(*
Local Variables:
compile-command: "make -C .."
End:
*)
OCaml

Innovation. Community. Security.