package data-encoding

  1. Overview
  2. Docs

Source file binary_length.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2018 Dynamic Ledger Solutions, Inc. <contact@tezos.com>     *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Binary_error_types

let fixed_length e =
  match Encoding.classify e with
  | `Fixed n -> Some n
  | `Dynamic | `Variable -> None

let n_length = Encoding.n_length

let length_to_size kind length =
  match kind with
  | `N -> n_length (Z.of_int length)
  | #Binary_size.unsigned_integer as kind -> Binary_size.integer_to_size kind

let () =
  if
    n_length (Z.of_int (Binary_size.max_int `N))
    <> Binary_size.max_size_of_uint30_like_n
  then assert false

let z_length = Encoding.z_length

let rec length : type x. x Encoding.t -> x -> int =
 fun e value ->
  let open Encoding in
  match e.encoding with
  (* Fixed *)
  | Null -> 0
  | Empty -> 0
  | Constant _ -> 0
  | Bool -> Binary_size.bool
  | Int8 -> Binary_size.int8
  | Uint8 -> Binary_size.uint8
  | Int16 -> Binary_size.int16
  | Uint16 -> Binary_size.uint16
  | Int31 -> Binary_size.int31
  | Int32 -> Binary_size.int32
  | Int64 -> Binary_size.int64
  | N -> n_length value
  | Z -> z_length value
  | RangedInt {minimum; maximum} ->
      Binary_size.integer_to_size @@ Binary_size.range_to_size ~minimum ~maximum
  | Float -> Binary_size.float
  | RangedFloat _ -> Binary_size.float
  | Bytes (`Fixed n, _) -> n
  | String (`Fixed n, _) -> n
  | Padded (e, n) -> length e value + n
  | String_enum (_, arr) ->
      Binary_size.integer_to_size @@ Binary_size.enum_size arr
  | Objs {kind = `Fixed n; _} -> n
  | Tups {kind = `Fixed n; _} -> n
  | Union {kind = `Fixed n; _} -> n
  (* Dynamic *)
  | Objs {kind = `Dynamic; left; right} ->
      let v1, v2 = value in
      length left v1 + length right v2
  | Tups {kind = `Dynamic; left; right} ->
      let v1, v2 = value in
      length left v1 + length right v2
  | Mu {kind = `Dynamic; fix; _} -> length (fix e) value
  | Obj (Opt {kind = `Dynamic; encoding = e; _}) -> (
      match value with None -> 1 | Some value -> 1 + length e value)
  (* Variable *)
  | Ignore -> 0
  | Bytes (`Variable, _) -> Bytes.length value
  | String (`Variable, _) -> String.length value
  | Array {length_limit; length_encoding; elts} ->
      (match length_limit with
      | No_limit -> ()
      | At_most max_length ->
          if Array.length value > max_length then
            raise (Write_error Array_invalid_length)
      | Exactly exact_length ->
          if Array.length value <> exact_length then
            raise (Write_error Array_invalid_length)) ;
      let length_size =
        match length_encoding with
        | Some le -> length le (Array.length value)
        | None -> 0
      in
      let value_size =
        match fixed_length elts with
        | Some s -> Array.length value * s
        | None -> Array.fold_left (fun acc v -> length elts v + acc) 0 value
      in
      length_size + value_size
  | List {length_limit; length_encoding; elts} ->
      (match length_limit with
      | No_limit -> ()
      | At_most max_length ->
          if List.compare_length_with value max_length > 0 then
            raise (Write_error List_invalid_length)
      | Exactly exact_length ->
          if List.compare_length_with value exact_length <> 0 then
            raise (Write_error List_invalid_length)) ;
      let length_size =
        match length_encoding with
        | Some le -> length le (List.length value)
        | None -> 0
      in
      let value_size =
        match fixed_length elts with
        | Some s -> List.length value * s
        | None -> List.fold_left (fun acc v -> length elts v + acc) 0 value
      in
      length_size + value_size
  | Objs {kind = `Variable; left; right} ->
      let v1, v2 = value in
      length left v1 + length right v2
  | Tups {kind = `Variable; left; right} ->
      let v1, v2 = value in
      length left v1 + length right v2
  | Obj (Opt {kind = `Variable; encoding = e; _}) -> (
      match value with None -> 0 | Some value -> length e value)
  | Mu {kind = `Variable; fix; _} -> length (fix e) value
  (* Variable or Dynamic we don't care for those constructors *)
  | Union {kind = `Dynamic | `Variable; tag_size; match_case; _} ->
      let (Matched (tag, e, value)) = match_case value in
      assert (tag <= Binary_size.max_int tag_size) ;
      Binary_size.tag_size tag_size + length e value
  (* Recursive*)
  | Obj (Req {encoding = e; _}) -> length e value
  | Obj (Dft {encoding = e; _}) -> length e value
  | Tup e -> length e value
  | Conv {encoding = e; proj; _} -> length e (proj value)
  | Describe {encoding = e; _} -> length e value
  | Splitted {encoding = e; _} -> length e value
  | Dynamic_size {kind; encoding = e} ->
      let length = length e value in
      if length > Binary_size.max_int kind then
        raise (Write_error Size_limit_exceeded) ;
      let size_length = length_to_size kind length in
      size_length + length
  | Check_size {limit; encoding = e} ->
      let length = length e value in
      if length > limit then raise (Write_error Size_limit_exceeded) ;
      length
  | Delayed f -> length (f ()) value

let length_res e x =
  match length e x with
  | v -> Ok v
  | exception Binary_error_types.Write_error e -> Error e

let ( let* ) = Option.bind

let rec maximum_length : type a. a Encoding.t -> int option =
 fun e ->
  let open Encoding in
  match e.encoding with
  (* Fixed *)
  | Null -> Some 0
  | Empty -> Some 0
  | Constant _ -> Some 0
  | Bool -> Some Binary_size.bool
  | Int8 -> Some Binary_size.int8
  | Uint8 -> Some Binary_size.uint8
  | Int16 -> Some Binary_size.int16
  | Uint16 -> Some Binary_size.uint16
  | Int31 -> Some Binary_size.int31
  | Int32 -> Some Binary_size.int32
  | Int64 -> Some Binary_size.int64
  | N -> None
  | Z -> None
  | RangedInt {minimum; maximum} ->
      Some
        (Binary_size.integer_to_size
        @@ Binary_size.range_to_size ~minimum ~maximum)
  | Float -> Some Binary_size.float
  | RangedFloat _ -> Some Binary_size.float
  | Bytes (`Fixed n, _) -> Some n
  | String (`Fixed n, _) -> Some n
  | Padded (e, n) ->
      let* s = maximum_length e in
      Some (s + n)
  | String_enum (_, arr) ->
      Some (Binary_size.integer_to_size @@ Binary_size.enum_size arr)
  | Objs {kind = `Fixed n; _} -> Some n
  | Tups {kind = `Fixed n; _} -> Some n
  | Union {kind = `Fixed n; _} -> Some n
  (* Dynamic *)
  | Obj (Opt {kind = `Dynamic; encoding = e; _}) ->
      let* s = maximum_length e in
      Some (s + Binary_size.uint8)
  (* Variable *)
  | Ignore -> Some 0
  | Bytes (`Variable, _) -> None
  | String (`Variable, _) -> None
  | Array {length_limit; length_encoding; elts = e} ->
      let* es =
        match length_limit with
        | No_limit -> None
        | At_most max_length | Exactly max_length ->
            let* s = maximum_length e in
            Some (s * max_length)
      in
      let* ls =
        match length_encoding with
        | Some le -> maximum_length le
        | None -> Some 0
      in
      Some (ls + es)
  | List {length_limit; length_encoding; elts = e} ->
      let* es =
        match length_limit with
        | No_limit -> None
        | At_most max_length | Exactly max_length ->
            let* s = maximum_length e in
            Some (s * max_length)
      in
      let* ls =
        match length_encoding with
        | Some le -> maximum_length le
        | None -> Some 0
      in
      Some (ls + es)
  | Obj (Opt {kind = `Variable; encoding = e; _}) -> maximum_length e
  (* Variable or Dynamic we don't care for those constructors *)
  | Union {kind = `Dynamic | `Variable; tag_size; cases; _} ->
      let* s =
        List.fold_left
          (fun acc (Case {encoding = e; _}) ->
            let* acc = acc in
            let* s = maximum_length e in
            Some (Stdlib.max acc s))
          (Some 0)
          cases
      in
      Some (s + Binary_size.tag_size tag_size)
  | Objs {kind = `Dynamic | `Variable; left; right} ->
      let* l = maximum_length left in
      let* r = maximum_length right in
      Some (l + r)
  | Tups {kind = `Dynamic | `Variable; left; right} ->
      let* l = maximum_length left in
      let* r = maximum_length right in
      Some (l + r)
  | Mu _ ->
      (* There could be bounded-size uses of Mu but it's unreasonable to expect
         to detect them statically this way. Use `check_size` around the mu to
         translate user-invariants into static encoding invariants *)
      None
  (* Recursive*)
  | Obj (Req {encoding = e; _}) -> maximum_length e
  | Obj (Dft {encoding = e; _}) -> maximum_length e
  | Tup e -> maximum_length e
  | Conv {encoding = e; _} -> maximum_length e
  | Describe {encoding = e; _} -> maximum_length e
  | Splitted {encoding = e; _} -> maximum_length e
  | Dynamic_size {kind; encoding = e} ->
      (* NOTE: technically the [kind] limits the range of possible sizes for the
         payload and so bounds the overall maximum size even if the payload has
         no limit.
         But in practice we end up returning 4+max_int31 a lot and it makes the
         function brittle on 32bit machines. *)
      let* inner_maximum_length = maximum_length e in
      let inner_maximum_length =
        (* the size may be restricted by the size's size
           E.g., if [kind] is [`Uint8], the payload's size cannot be more than
           256. *)
        min inner_maximum_length (Binary_size.max_int kind)
      in
      let size_maximum_length = Binary_size.length_to_max_size kind in
      Some (size_maximum_length + inner_maximum_length)
  | Check_size {limit; encoding = e} -> (
      (* NOTE: it is possible that the statically-provable maximum size exceeds
         the dynamically checked limit. But the difference might be explained by
         subtle invariants that do not appear in the encoding. *)
      match maximum_length e with
      | Some s -> Some (min s limit)
      | None -> Some limit)
  | Delayed f -> maximum_length (f ())