Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
tdigest.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
open! Core_kernel open Float type delta = | Merging of float | Discrete type k = | Manual | Automatic of float type cx = | Always | Growth of float type settings = { delta: delta; k: k; cx: cx; } type centroid = { mean: float; cumn: float; mean_cumn: float; n: float; } type stats = { cumulates_count: int; compress_count: int; auto_compress_count: int; } type t = { settings: settings; centroids: centroid Float.Map.t; mutable min: centroid option; mutable max: centroid option; n: float; last_cumulate: float; stats: stats; } type info = { count: int; size: int; cumulates_count: int; compress_count: int; auto_compress_count: int; } [@@deriving sexp] type bounds = | Neither | Both of (centroid * centroid) | Equal of centroid | Lower of centroid | Upper of centroid let get_min = function | { min = (Some _ as x); _ } -> x | { min = None; centroids; _ } when Float.Map.is_empty centroids -> None | ({ min = None; _ } as td) -> let min = Float.Map.min_elt td.centroids |> Option.map ~f:snd in td.min <- min; min let get_max = function | { max = (Some _ as x); _ } -> x | { max = None; centroids; _ } when Float.Map.is_empty centroids -> None | ({ max = None; _ } as td) -> let max = Float.Map.max_elt td.centroids |> Option.map ~f:snd in td.max <- max; max let create ?(delta = Merging 0.01) ?(k = Automatic 25.) ?(cx = Growth 1.1) () = let k = begin match k with | Manual -> k | Automatic x when Float.is_positive x -> k | Automatic 0. -> failwith "TDigest k parameter cannot be zero, set to Tdigest.Manual to disable automatic compression." | Automatic x -> failwithf "TDigest k parameter must be positive, but was %f" x () end in let cx = begin match cx with | Always -> cx | Growth x when Float.is_positive x -> cx | Growth 0. -> failwith "TDigest cx parameter cannot be zero, set to Tdigest.Always to disable caching of cumulative totals." | Growth x -> failwithf "TDigest cx parameter must be positive, but was %f" x () end in { settings = { delta; k; cx; }; centroids = Float.Map.empty; min = None; max = None; n = 0.; last_cumulate = 0.; stats = { cumulates_count = 0; compress_count = 0; auto_compress_count = 0; }; } let info { centroids; n; stats; _ } = { count = to_int n; size = Float.Map.length centroids; cumulates_count = stats.cumulates_count; compress_count = stats.compress_count; auto_compress_count = stats.auto_compress_count; } let find_nearest td mean = begin match Float.Map.closest_key td.centroids `Less_or_equal_to mean with | Some (k, v) when mean = k -> Some v | Some (k1, v1) -> begin match Float.Map.closest_key td.centroids `Greater_than mean with | None -> None | Some (k2, _v2) when (mean - k1) < (k2 - mean) -> Some v1 | Some (_k2, v2) -> Some v2 end | None -> None end let use_cache = function | { n; last_cumulate; settings = { cx = Growth cx; _ }; _ } when cx > n / last_cumulate -> true | _ -> false let cumulate td ~exact = if (td.n = td.last_cumulate) || (not exact && use_cache td) then td else begin let cumn = ref 0. in let centroids = Float.Map.map td.centroids ~f:(fun data -> let updated = { data with mean_cumn = !cumn + data.n / 2.; cumn = !cumn + data.n; } in cumn := updated.cumn; updated ) in { td with centroids; min = None; max = None; n = !cumn; last_cumulate = !cumn; stats = { td.stats with cumulates_count = succ td.stats.cumulates_count } } end let new_centroid td ~mean ~n ~cumn = let data = { mean; cumn; n; mean_cumn = n / 2. } in let centroids = Float.Map.add_exn td.centroids ~key:data.mean ~data in { td with centroids; min = None; max = None; n = td.n + n; } let add_weight td nearest ~mean ~n = let updated = { mean = if nearest.mean = mean then nearest.mean else nearest.mean + (n * (mean - nearest.mean) / (nearest.n + n)); cumn = nearest.cumn + n; mean_cumn = nearest.mean_cumn + n / 2.; n = nearest.n + n; } in let centroids = Float.Map.remove td.centroids nearest.mean |> Float.Map.add_exn ~key:updated.mean ~data:updated in { td with centroids; n = td.n + n; min = None; max = None; } let internal_digest td ~n ~mean = let nearest_is_boundary boundary nearest = Option.value_map boundary ~default:false ~f:(fun { mean; _ } -> mean = nearest.mean) in let td = begin match (find_nearest td mean), td.settings.delta with | (Some nearest), _ when nearest.mean = mean -> add_weight td nearest ~mean ~n | (Some nearest), _ when nearest_is_boundary (get_min td) nearest -> new_centroid td ~mean ~n ~cumn:0.0 | (Some nearest), _ when nearest_is_boundary (get_max td) nearest -> new_centroid td ~mean ~n ~cumn:td.n | (Some nearest), Discrete -> new_centroid td ~mean ~n ~cumn:nearest.cumn | (Some nearest), Merging delta -> let p = nearest.mean_cumn / td.n in let max_n = round_down (4.0 * td.n * delta * p * (1.0 - p)) in if (max_n - nearest.n) >= n then add_weight td nearest ~mean ~n else new_centroid td ~mean ~n ~cumn:nearest.cumn | None, _ -> new_centroid td ~mean ~n ~cumn:0.0 end in cumulate td ~exact:false let shuffled_array td = if Float.Map.is_empty td.centroids then [||] else let arr = Array.create ~len:(Float.Map.length td.centroids) { mean = 0.; n = 0.; cumn = 0.; mean_cumn = 0. } in let _i = Float.Map.fold td.centroids ~init:0 ~f:(fun ~key:_ ~data i -> Array.set arr i data; succ i ) in let _i = Array.fold_right arr ~init:(Array.length arr) ~f:(fun _x i -> let random = (Random.float 1.0) * (of_int i) |> to_int in let current = pred i in Array.swap arr random current; current ) in arr let rebuild td ~auto = let arr = shuffled_array td in let blank = { td with centroids = Float.Map.empty; min = None; max = None; n = 0.; last_cumulate = 0.; stats = { td.stats with compress_count = succ td.stats.compress_count; auto_compress_count = (if auto then succ else Fn.id) td.stats.auto_compress_count; } } in let td = Array.fold arr ~init:blank ~f:(fun acc { mean; n; _ } -> internal_digest acc ~n ~mean ) in cumulate td ~exact:true let digest td ?(n = 1) ~mean = let td = internal_digest td ~n:(Int.to_float n) ~mean in begin match td.settings with | { delta = Merging delta; k = Automatic k; _ } when (Float.Map.length td.centroids |> of_int) > k / delta -> rebuild td ~auto:true | _ -> td end let compress ?delta td = begin match delta with | None -> rebuild td ~auto:false | Some delta -> let settings = td.settings in let updated = rebuild { td with settings = { td.settings with delta } } ~auto:false in { updated with settings } end let add ?(n = 1) ~data td = digest td ~n ~mean:data let add_list ?(n = 1) xs td = List.fold xs ~init:td ~f:(fun acc mean -> digest acc ~n ~mean) let to_string td = let buf = Buffer.create Int.(Float.Map.length td.centroids * 16) in let add_float f = let v = Int64.bits_of_float f in let rec loop = function | 8 -> () | i -> Buffer.add_char buf Int64.(255L land (shift_right v Int.(i * 8)) |> to_int_exn |> Char.of_int_exn); loop (succ i) in loop 0 in Float.Map.iter td.centroids ~f:(fun { mean; n; _ } -> add_float mean; add_float n ); td, (Buffer.contents buf) let of_string ?(delta = Merging 0.01) ?(k = Automatic 25.) ?(cx = Growth 1.1) str = if Int.(String.length str % 16 <> 0) then raise (Invalid_argument "Invalid string length for Tdigest.of_string"); let td = create ~delta ~k ~cx () in let _i, _mean, _n, centroids = String.fold str ~init:(0, 0L, 0L, Float.Map.empty) ~f:(fun (i, pmean, pn, acc) c -> let x = c |> Char.to_int |> Int64.of_int_exn in begin match i with | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 -> let mean = Int64.(pmean lor (shift_left x Int.(i * 8))) in (succ i, mean, pn, acc) | 8 | 9 | 10 | 11 | 12 | 13 | 14 -> let n = Int64.(pn lor (shift_left x Int.((i - 8) * 8))) in (succ i, pmean, n, acc) | 15 -> let mean = Int64.float_of_bits pmean in let n = Int64.(pn lor (shift_left x 56) |> float_of_bits) in let acc = Float.Map.update acc mean ~f:(function | None -> { mean; n; cumn = 0.; mean_cumn = 0. } | Some c -> { c with n = c.n + n } ) in (0, 0L, 0L, acc) | x -> failwithf "Tdigest.of_string: impossible case '%d'. Please report this bug." x () end ) in rebuild { td with centroids } ~auto:true let bounds td needle lens = let search kind = Float.Map.binary_search td.centroids kind needle ~compare:(fun ~key:_ ~data x -> compare (lens data) x) in begin match search `Last_less_than_or_equal_to with | Some (_k, v) when (lens v) = needle -> Equal v | Some (_k1, v1) -> begin match search `First_strictly_greater_than with | Some (_k2, v2) -> Both (v1, v2) | None -> Lower v1 end | None -> begin match get_min td with | Some v -> Upper v | None -> Neither end end let percentile td p = if Float.Map.is_empty td.centroids then td, None else begin let td = cumulate td ~exact:true in let h = td.n * p in begin match (bounds td h (fun { mean_cumn; _ } -> mean_cumn)), td.settings.delta with | (Lower x), _ | (Upper x), _ | (Equal x), _ -> td, Some x.mean | (Both (lower, upper)), Merging _ -> let num = lower.mean + (h - lower.mean_cumn) * (upper.mean - lower.mean) / (upper.mean_cumn - lower.mean_cumn) in td, Some num | (Both (lower, _upper)), Discrete when h <= lower.cumn -> td, Some lower.mean | (Both (_lower, upper)), Discrete -> td, Some upper.mean | Neither, _ -> td, None end end let percentiles td ps = List.fold_map ps ~init:td ~f:percentile let p_rank td p = begin match get_min td with | None -> td, None | Some v when p < v.mean -> td, Some 0.0 | Some _ -> begin match get_max td with | None -> td, None | Some v when p > v.mean -> td, Some 1.0 | Some _ -> let td = cumulate td ~exact:true in begin match (bounds td p (fun { mean; _ } -> mean)), td.settings.delta with | (Both (lower, _)), Discrete | (Lower lower), Discrete | (Equal lower), Discrete -> td, Some (lower.cumn / td.n) | Neither, Discrete | (Upper _), Discrete -> td, None | (Equal x), Merging _ -> td, Some (x.mean_cumn / td.n) | (Both (lower, upper)), Merging _ -> let num = lower.mean_cumn + ((p - lower.mean) * (upper.mean_cumn - lower.mean_cumn) / (upper.mean - lower.mean)) in td, Some (num / td.n) | _, Merging _ -> td, None end end end let p_ranks td ps = List.fold_map ps ~init:td ~f:p_rank module Testing = struct let to_yojson td = let ll = Float.Map.fold_right td.centroids ~init:[] ~f:(fun ~key:_ ~data acc -> `Assoc [ "mean", `Float data.mean; "n", `Float data.n; ] :: acc ) in `Assoc ["centroids", `List ll] let min td = Option.map (get_min td) ~f:(fun { mean; n; _ } -> mean, n) let max td = Option.map (get_max td) ~f:(fun { mean; n; _ } -> mean, n) end