Page
Library
Module
Module type
Parameter
Class
Class type
Source
Tablecloth.FloatSourceA module for working with floating-point numbers. Valid syntax for floats includes:
0.
0.0
42.
42.0
3.14
0.1234
123_456.123_456
6.022e23 (* = (6.022 * 10^23) *)
6.022e+23 (* = (6.022 * 10^23) *)
1.602e−19 (* = (1.602 * 10^-19) *)
1e3 (* = (1 * 10 ** 3) = 1000. *)Without opening this module you can use the . suffixed operators e.g
1. +. 2. /. 0.25 *. 2. = 17. But by opening this module locally you can use the un-suffixed operators
Float.((10.0 - 1.5 / 0.5) ** 3.0) = 2401.0Historical Note: The particular details of floats (e.g. NaN) are specified by IEEE 754 which is literally hard-coded into almost all CPUs in the world.
NaN as a named value. NaN stands for not a number.
Note comparing values with Float.nan will always return false even if the value you are comparing against is also NaN.
e.g
let isNotANmber x = Float.(x = nan) in
isNotANumber nan = false
For detecting Nan you should use Float.isNaN
Negative infinity, see Float.infinity
An approximation of Euler's number.
Addition for floating point numbers.
Float.add 3.14 3.14 = 6.28Float.(3.14 + 3.14 = 6.28)Although ints and floats support many of the same basic operations such as addition and subtraction you cannot add an int and a float directly which means you need to use functions like Int.toFloat or Float.roundToInt to convert both values to the same type.
So if you needed to add a List.length to a float for some reason, you could:
Float.add 3.14 (Int.toFloat (List.length [1,2,3])) = 6.14or
Float.roundToInt 3.14 + List.length [1,2,3] = 6Languages like Java and JavaScript automatically convert int values to float values when you mix and match. This can make it difficult to be sure exactly what type of number you are dealing with and cause unexpected behavior.
OCaml has opted for a design that makes all conversions explicit.
Subtract numbers
Float.subtract 4.0 3.0 = 1.0Alternatively the - operator can be used:
Float.(4.0 - 3.0) = 1.0See Float.subtract
Multiply numbers like
Float.multiply 2.0 7.0 = 14.0Alternatively the operator * can be used:
Float.(2.0 * 7.0) = 14.0See Float.multiply
Floating-point division:
Float.divide 3.14 ~by:2.0 = 1.57Alternatively the / operator can be used:
Float.(3.14 / 2.0) = 1.57See Float.divide
Exponentiation, takes the base first, then the exponent.
Float.power ~base:7.0 ~exponent:3.0 = 343.0Alternatively the ** operator can be used:
Float.(7.0 ** 3.0) = 343.0See Float.power
Flips the 'sign' of a float so that positive floats become negative and negative integers become positive. Zero stays as it is.
Float.negate 8 = (-8)Float.negate (-7) = 7Float.negate 0 = 0Alternatively an operator is available:
Float.(~- 4.0) = (-4.0)See Float.negate
Get the absolute value of a number.
Float.absolute 8. = 8.Float.absolute (-7) = 7Float.absolute 0 = 0Returns the larger of two floats, if both arguments are equal, returns the first argument
Float.maximum 7. 9. = 9.Float.maximum (-4.) (-1.) = (-1.)If either (or both) of the arguments are NaN, returns NaN
Float.(isNaN (maximum 7. nan) = trueReturns the smaller of two floats, if both arguments are equal, returns the first argument
Float.minimum 7.0 9.0 = 7.0Float.minimum (-4.0) (-1.0) = (-4.0)If either (or both) of the arguments are NaN, returns NaN
Float.(isNaN (minimum 7. nan) = trueClamps n within the inclusive lower and upper bounds.
Float.clamp ~lower:0. ~upper:8. 5. = 5.Float.clamp ~lower:0. ~upper:8. 9. = 8.Float.clamp ~lower:(-10.) ~upper:(-5.) 5. = -5.Throws an Invalid_argument exception if lower > upper
Take the square root of a number.
Float.squareRoot 4.0 = 2.0Float.squareRoot 9.0 = 3.0squareRoot returns NaN when its argument is negative. See Float.nan for more.
Calculate the logarithm of a number with a given base.
Float.log ~base:10. 100. = 2.Float.log ~base:2. 256. = 8.Determine whether a float is an undefined or unrepresentable number.
Float.isNaN (0.0 / 0.0) = trueFloat.(isNaN (squareRoot (-1.0)) = trueFloat.isNaN (1.0 / 0.0) = false (* Float.infinity {b is} a number *)Float.isNaN 1. = falseNote this function is more useful than it might seem since NaN does not equal Nan:
Float.(nan = nan) = falseDetermine whether a float is finite number. True for any float except Infinity, -Infinity or NaN
Float.isFinite (0. / 0.) = falseFloat.(isFinite (squareRoot (-1.)) = falseFloat.isFinite (1. / 0.) = falseFloat.isFinite 1. = trueFloat.(isFinite nan) = falseNotice that NaN is not finite!
For a float n to be finite implies that Float.(not (isInfinite n || isNaN n)) evaluates to true.
Determine whether a float is positive or negative infinity.
Float.isInfinite (0. / 0.) = falseFloat.(isInfinite (squareRoot (-1.)) = falseFloat.isInfinite (1. / 0.) = trueFloat.isInfinite 1. = falseFloat.(isInfinite nan) = falseNotice that NaN is not infinite!
For a float n to be finite implies that Float.(not (isInfinite n || isNaN n)) evaluates to true.
Checks if n is between lower and up to, but not including, upper. If lower is not specified, it's set to to 0.0.
Float.inRange ~lower:2. ~upper:4. 3. = trueFloat.inRange ~lower:1. ~upper:2. 2. = falseFloat.inRange ~lower:5.2 ~upper:7.9 9.6 = falseThrows an Invalid_argument exception if lower > upper
hypotenuse x y returns the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x, y) to (0, 0).
Float.hypotenuse 3. 4. = 5.Converts an angle in degrees to Float.radians.
Float.degrees 180. = vConvert an angle in turns into Float.radians.
One turn is equal to 360°.
Float.(turns (1. / 2.)) = piFloat.(turns 1. = degrees 360.)Convert polar coordinates (r, θ) to Cartesian coordinates (x,y).
Float.(fromPolar (squareRoot 2., degrees 45.)) = (1., 1.)Convert Cartesian coordinates (x,y) to polar coordinates (r, θ).
Float.toPolar (3.0, 4.0) = (5.0, 0.9272952180016122)Float.toPolar (5.0, 12.0) = (13.0, 1.1760052070951352)Figure out the cosine given an angle in radians.
Float.(cos (degrees 60.)) = 0.5000000000000001Float.(cos (radians (pi / 3.))) = 0.5000000000000001Figure out the arccosine for adjacent / hypotenuse in radians:
Float.(acos (radians 1.0 / 2.0)) = Float.radians 1.0471975511965979 (* 60° or pi/3 radians *)Figure out the sine given an angle in radians.
Float.(sin (degrees 30.)) = 0.49999999999999994Float.(sin (radians (pi / 6.)) = 0.49999999999999994Figure out the arcsine for opposite / hypotenuse in radians:
Float.(asin (1.0 / 2.0)) = 0.5235987755982989 (* 30° or pi / 6 radians *)Figure out the tangent given an angle in radians.
Float.(tan (degrees 45.)) = 0.9999999999999999Float.(tan (radians (pi / 4.)) = 0.9999999999999999Float.(tan (pi / 4.)) = 0.9999999999999999This helps you find the angle (in radians) to an (x, y) coordinate, but in a way that is rarely useful in programming.
You probably want atan2 instead!
This version takes y / x as its argument, so there is no way to know whether the negative signs comes from the y or x value. So as we go counter-clockwise around the origin from point (1, 1) to (1, -1) to (-1,-1) to (-1,1) we do not get angles that go in the full circle:
Float.atan (1. /. 1.) = 0.7853981633974483 (* 45° or pi/4 radians *)Float.atan (1. /. -1.) = -0.7853981633974483 (* 315° or 7 * pi / 4 radians *)Float.atan (-1. /. -1.) = 0.7853981633974483 (* 45° or pi/4 radians *)Float.atan (-1. /. 1.) = -0.7853981633974483 (* 315° or 7 * pi/4 radians *)Notice that everything is between pi / 2 and -pi/2. That is pretty useless for figuring out angles in any sort of visualization, so again, check out Float.atan2 instead!
This helps you find the angle (in radians) to an (x, y) coordinate. So rather than saying Float.(atan (y / x)) you can Float.atan2 ~y ~x and you can get a full range of angles:
Float.atan2 ~y:1. ~x:1. = 0.7853981633974483 (* 45° or pi/4 radians *)Float.atan2 ~y:1. ~x:(-1.) = 2.3561944901923449 (* 135° or 3 * pi/4 radians *)Float.atan2 ~y:(-1.) ~x:(-1.) = -(2.3561944901923449) (* 225° or 5 * pi/4 radians *)Float.atan2 ~y:(-1.) ~x:1.) = -(0.7853981633974483) (* 315° or 7 * pi/4 radians *)Round a number, by default to the to the closest int with halves rounded `Up (towards positive infinity)
Float.round 1.2 = 1.0
Float.round 1.5 = 2.0
Float.round 1.8 = 2.0
Float.round -1.2 = -1.0
Float.round -1.5 = -1.0
Float.round -1.8 = -2.0Other rounding strategies are available by using the optional ~direction label.
Towards zero
Float.round ~direction:`Zero 1.2 = 1.0
Float.round ~direction:`Zero 1.5 = 1.0
Float.round ~direction:`Zero 1.8 = 1.0
Float.round ~direction:`Zero (-1.2) = -1.0
Float.round ~direction:`Zero (-1.5) = -1.0
Float.round ~direction:`Zero (-1.8) = -1.0Away from zero
Float.round ~direction:`AwayFromZero 1.2 = 1.0
Float.round ~direction:`AwayFromZero 1.5 = 1.0
Float.round ~direction:`AwayFromZero 1.8 = 1.0
Float.round ~direction:`AwayFromZero (-1.2) = -1.0
Float.round ~direction:`AwayFromZero (-1.5) = -1.0
Float.round ~direction:`AwayFromZero (-1.8) = -1.0Towards infinity
This is also known as Float.ceiling
Float.round ~direction:`Up 1.2 = 1.0
Float.round ~direction:`Up 1.5 = 1.0
Float.round ~direction:`Up 1.8 = 1.0
Float.round ~direction:`Up (-1.2) = -1.0
Float.round ~direction:`Up (-1.5) = -1.0
Float.round ~direction:`Up (-1.8) = -1.0Towards negative infinity
This is also known as Float.floor
List.map ~f:(Float.round ~direction:`Down) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -2.0; 1.0 1.0 1.0]To the closest integer
Rounding a number x to the closest integer requires some tie-breaking for when the fraction part of x is exactly 0.5.
Halves rounded towards zero
List.map ~f:(Float.round ~direction:(`Closest `AwayFromZero)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -1.0; -1.0; 1.0 1.0 2.0]Halves rounded away from zero
This method is often known as commercial rounding
List.map ~f:(Float.round ~direction:(`Closest `AwayFromZero)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -1.0; 1.0 2.0 2.0]Halves rounded down
List.map ~f:(Float.round ~direction:(`Closest `Down)) [-1.8; -1.5; -1.2; 1.2; 1.5; 1.8] = [-2.0; -2.0; -1.0; 1.0 1.0 2.0]Halves rounded up
This is the default.
Float.round 1.5 is the same as Float.round ~direction:(`Closest `Up) 1.5
Halves rounded towards the closest even number
This tie-breaking rule is the default rounding mode using in
Float.round ~direction:(`Closest `ToEven) -1.5 = -2.0Float.round ~direction:(`Closest `ToEven) -2.5 = -2.0Floor function, equivalent to Float.round ~direction:`Down.
Float.floor 1.2 = 1.0Float.floor 1.5 = 1.0Float.floor 1.8 = 1.0Float.floor -1.2 = -2.0Float.floor -1.5 = -2.0Float.floor -1.8 = -2.0Ceiling function, equivalent to Float.round ~direction:`Up.
Float.ceiling 1.2 = 2.0Float.ceiling 1.5 = 2.0Float.ceiling 1.8 = 2.0Float.ceiling -1.2 = (-1.0)Float.ceiling -1.5 = (-1.0)Float.ceiling -1.8 = (-1.0)Ceiling function, equivalent to Float.round ~direction:`Zero.
Float.truncate 1.0 = 1Float.truncate 1.2 = 1Float.truncate 1.5 = 1Float.truncate 1.8 = 1Float.truncate (-1.2) = -1Float.truncate (-1.5) = -1Float.truncate (-1.8) = -1Convert an int to a float
Float.fromInt 5 = 5.0Float.fromInt 0 = 0.0Float.fromInt -7 = -7.0Converts a float to an Int by ignoring the decimal portion. See Float.truncate for examples.
Returns None when trying to round a float which can't be represented as an int such as Float.nan or Float.infinity or numbers which are too large or small.
Float.(toInt nan) = NoneFloat.(toInt infinity) = NoneYou probably want to use some form of Float.round prior to using this function.
Float.(round 1.6 |> toInt) = Some 2