Source file stdcompat__seq.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
include Seq
let concat_map = flat_map
let rec concat seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
append hd (concat tl) ()
let is_empty seq =
match seq () with
| Nil -> true
| Cons _ -> false
let uncons seq =
match seq () with
| Nil -> None
| Cons (hd, tl) -> Some (hd, tl)
let rec length_rec accu seq =
match seq () with
| Nil -> accu
| Cons (_hd, tl) -> length_rec (succ accu) tl
let length seq =
length_rec 0 seq
let iteri f seq =
let rec aux i seq = match seq () with
| Nil -> ()
| Cons (x, next) ->
f i x;
aux (succ i) next
in
aux 0 seq
let fold_lefti f acc seq =
let rec aux f acc i seq = match seq () with
| Nil -> acc
| Cons (x, next) ->
let acc = f acc i x in
aux f acc (succ i) next
in
aux f acc 0 seq
let rec for_all p seq =
match seq () with
| Nil -> true
| Cons (hd, tl) -> p hd && for_all p tl
let rec exists p seq =
match seq () with
| Nil -> false
| Cons (hd, tl) -> p hd || exists p tl
let rec find p seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
if p hd then
Some hd
else
find p tl
let rec find_map f seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
match f hd with
| None -> find_map f tl
| Some _ as result -> result
let iter2 f a b =
let rec aux a b =
match a () with
| Nil -> ()
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> ()
| Cons (b_hd, b_tl) ->
f a_hd b_hd;
aux a_tl b_tl
in
aux a b
let fold_left2 f acc a b =
let rec aux acc a b =
match a () with
| Nil -> acc
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> acc
| Cons (b_hd, b_tl) ->
aux (f acc a_hd b_hd) a_tl b_tl
in
aux acc a b
let rec for_all2 p a b =
match a () with
| Nil -> true
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> true
| Cons (b_hd, b_tl) -> p a_hd b_hd && for_all2 p a_tl b_tl
let rec exists2 p a b =
match a () with
| Nil -> false
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> false
| Cons (b_hd, b_tl) -> p a_hd b_hd || exists2 p a_tl b_tl
let rec equal p a b =
match a (), b () with
| Nil, Nil -> true
| Nil, Cons _ | Cons _, Nil -> false
| Cons (a_hd, a_tl), Cons (b_hd, b_tl) -> p a_hd b_hd && equal p a_tl b_tl
let rec compare o a b =
match a (), b () with
| Nil, Nil -> 0
| Nil, Cons _ -> -1
| Cons _, Nil -> 1
| Cons (a_hd, a_tl), Cons (b_hd, b_tl) ->
match o a_hd b_hd with
| 0 -> compare o a_tl b_tl
| result -> result
let init n f =
let rec aux i () =
if i < n then
Cons (f i, aux (succ i))
else
Nil in
if n < 0 then
invalid_arg "Seq.init: length should be non-negative";
aux 0
let rec repeat x () =
Cons (x, repeat x)
let rec forever gen () =
Cons (gen (), forever gen)
let cycle seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
let rec aux tl' () =
match tl' () with
| Nil -> Cons (hd, aux tl)
| Cons (hd', tl') -> Cons (hd', aux tl') in
Cons (hd, aux tl)
let rec iterate1 f x () =
let fx = f x in
Cons (fx, iterate1 f fx)
let iterate f x () =
Cons (x, iterate1 f x)
let mapi f seq =
let rec aux i seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
Cons (f i x, aux (succ i) next)
in
aux 0 seq
let scan f acc seq =
let rec aux f acc seq () = match seq () with
| Nil -> Nil
| Cons (x, next) ->
let acc = f acc x in
Cons (acc, aux f acc next)
in
cons acc (aux f acc seq)
let rec take_rec n seq =
if n > 0 then fun () ->
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
Cons (hd, take_rec (pred n) tl)
else
empty
let take n seq =
if n < 0 then
invalid_arg "Seq.take: length should be non-negative";
take_rec n seq
let rec drop_rec n seq =
match seq () with
| Nil -> empty
| Cons (_hd, tl) ->
let n' = pred n in
if n' > 0 then
drop_rec n' tl
else
tl
let drop n seq =
if n < 0 then
invalid_arg "Seq.drop: length should be non-negative";
if n = 0 then
seq
else
drop_rec n seq
let rec take_while p seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
if p hd then
Cons (hd, take_while p tl)
else
Nil
let rec drop_while_rec p seq =
match seq () with
| Nil -> Nil
| Cons (hd, tl) as result ->
if p hd then
drop_while_rec p tl
else
result
let drop_while p seq () =
drop_while_rec p seq
let rec group eq seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
Cons (cons hd (take_while (eq hd) tl), group eq (drop_while (eq hd) tl))
let rec memoize seq =
let next =
lazy (match seq () with
| Nil -> Nil
| Cons (hd, tl) -> Cons (hd, memoize tl)) in
fun () -> Lazy.force next
exception Forced_twice
let rec once seq =
let consumed = ref false in
fun () ->
if !consumed then
raise Forced_twice;
consumed := true;
match seq () with
| Nil -> Nil
| Cons (hd, tl) -> Cons (hd, once tl)
let rec transpose seq () =
match seq () with
| Nil -> Nil
| Cons (hd, tl) ->
let first () =
let hd_opt seq =
match seq () with
| Nil -> None
| Cons (hd, _tl) -> Some hd in
let tl' = filter_map hd_opt tl in
match hd () with
| Nil -> tl' ()
| Cons (hd, _tl) -> Cons (hd, tl') in
let others () =
let tl_opt seq =
match seq () with
| Nil -> None
| Cons (_hd, tl) -> Some tl in
let tl' = filter_map tl_opt tl in
match hd () with
| Nil -> tl' ()
| Cons (_hd, tl) -> Cons (tl, tl') in
if is_empty first then
Nil
else
Cons (first, transpose others)
let rec zip a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons ((a_hd, b_hd), zip a_tl b_tl)
let rec map2 f a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons (f a_hd b_hd, map2 f a_tl b_tl)
let rec interleave a b () =
match a () with
| Nil -> b ()
| Cons (hd, tl) ->
Cons (hd, interleave b tl)
let rec sorted_merge1l o a_cell a_hd a_tl b () =
match b () with
| Nil -> a_cell
| Cons (b_hd, b_tl) as b_cell ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
and sorted_merge1r o a b_cell b_hd b_tl () =
match a () with
| Nil -> b_cell
| Cons (a_hd, a_tl) as a_cell ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
and sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl =
if o a_hd b_hd <= 0 then
Cons (a_hd, sorted_merge1r o a_tl b_cell b_hd b_tl)
else
Cons (b_hd, sorted_merge1l o a_cell a_hd a_tl b_tl)
let sorted_merge o a b () =
match a (), b () with
| Nil, Nil -> Nil
| Nil, c | c, Nil -> c
| Cons (a_hd, a_tl) as a_cell, (Cons (b_hd, b_tl) as b_cell) ->
sorted_merge1 o a_cell a_hd a_tl b_cell b_hd b_tl
let rec map_product1 f a_hd a_tl b =
match b () with
| Nil -> Nil
| Cons (b_hd, b_tl) ->
Cons (f a_hd b_hd,
append (map (fun ai -> f ai b_hd) a_tl)
(fun () -> map_product1 f a_hd a_tl b_tl))
let map_product f a b () =
match a () with
| Nil -> Nil
| Cons (a_hd, a_tl) ->
map_product1 f a_hd a_tl b
let product a b =
map_product (fun a b -> (a, b)) a b
let unzip seq =
(map fst seq, map snd seq)
let split = unzip
let partition_map f seq =
filter_map (fun x -> Stdcompat__either.find_left (f x)) seq,
filter_map (fun x -> Stdcompat__either.find_right (f x)) seq
let partition p seq =
filter p seq, filter (fun x -> not (p x)) seq
let rec of_dispenser f () =
match f () with
| None -> Nil
| Some item -> Cons (item, of_dispenser f)
let to_dispenser seq =
let seq_ref = ref seq in
fun () ->
match !seq_ref () with
| Nil -> None
| Cons (hd, tl) ->
seq_ref := tl;
Some hd
let rec ints i () =
Cons (i, ints (succ i))
let rec find_index_from index p seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
if p hd then
Some index
else
find_index_from (succ index) p tl
let find_index p seq =
find_index_from 0 p seq
let rec find_mapi_from index f seq =
match seq () with
| Nil -> None
| Cons (hd, tl) ->
match f index hd with
| None -> find_mapi_from (succ index) f tl
| some -> some
let find_mapi f seq =
find_mapi_from 0 f seq