Source file expr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
open Ty
type t = expr Hc.hash_consed
and expr =
| Val of Value.t
| Ptr of int32 * t
| Symbol of Symbol.t
| List of t list
| Array of t array
| Tuple of t list
| App : [> `Op of string ] * t list -> expr
| Unop of Ty.t * unop * t
| Binop of Ty.t * binop * t * t
| Triop of Ty.t * triop * t * t * t
| Relop of Ty.t * relop * t * t
| Cvtop of Ty.t * cvtop * t
| Concat of t * t
module Expr = struct
type t = expr
let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
if List.compare_lengths l1 l2 = 0 then List.for_all2 ( == ) l1 l2 else false
let equal (e1 : expr) (e2 : expr) : bool =
match (e1, e2) with
| Val v1, Val v2 -> Value.equal v1 v2
| Ptr (b1, o1), Ptr (b2, o2) -> b1 = b2 && o1 == o2
| Symbol s1, Symbol s2 -> Symbol.equal s1 s2
| List l1, List l2 -> list_eq l1 l2
| Array a1, Array a2 ->
Array.(length a1 = length a2) && Array.for_all2 ( == ) a1 a2
| Tuple l1, Tuple l2 -> list_eq l1 l2
| App (`Op x1, l1), App (`Op x2, l2) -> String.equal x1 x2 && list_eq l1 l2
| Unop (t1, op1, e1), Unop (t2, op2, e2) ->
Ty.equal t1 t2 && op1 = op2 && e1 == e2
| Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && op1 = op2 && e1 == e2 && e3 == e4
| Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && op1 = op2 && e1 == e2 && e3 == e4
| Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
Ty.equal t1 t2 && op1 = op2 && e1 == e2 && e3 == e4 && e5 == e6
| Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
Ty.equal t1 t2 && op1 = op2 && e1 == e2
| Extract (e1, h1, l1), Extract (e2, h2, l2) ->
e1 == e2 && h1 = h2 && l1 = l2
| Concat (e1, e3), Concat (e2, e4) -> e1 == e2 && e3 == e4
| _ -> false
let hash (e : expr) : int =
let h x = Hashtbl.hash x in
match e with
| Val v -> h v
| Ptr (b, o) -> h (b, o.tag)
| Symbol s -> h s
| List v -> h v
| Array es -> h es
| Tuple es -> h es
| App (x, es) -> h (x, es)
| Unop (ty, op, e) -> h (ty, op, e.tag)
| Cvtop (ty, op, e) -> h (ty, op, e.tag)
| Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
| Extract (e, hi, lo) -> h (e.tag, hi, lo)
| Concat (e1, e2) -> h (e1.tag, e2.tag)
end
module Hc = Hc.Make [@inlined hint] (Expr)
let equal (hte1 : t) (hte2 : t) = hte1.tag == hte2.tag
let hash (hte : t) = hte.tag
let make (e : expr) = Hc.hashcons e
let ( @: ) e _ = make e
let view (hte : t) : expr = hte.node [@@inline]
let symbol s = make (Symbol s)
let mk_symbol s = make (Symbol s)
let is_num (e : t) = match view e with Val (Num _) -> true | _ -> false
let rec ty (hte : t) : Ty.t =
match view hte with
| Val x -> Value.type_of x
| Ptr _ -> Ty_bitv 32
| Symbol x -> Symbol.type_of x
| List _ -> Ty_list
| Array _ -> Ty_array
| Tuple _ -> Ty_tuple
| App _ -> assert false
| Unop (ty, _, _) -> ty
| Binop (ty, _, _, _) -> ty
| Triop (ty, _, _, _, _) -> ty
| Relop (ty, _, _, _) -> ty
| Cvtop (ty, _, _) -> ty
| Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
| Concat (e1, e2) -> (
match (ty e1, ty e2) with
| Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
| t1, t2 -> Log.err "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
let rec is_symbolic (v : t) : bool =
match view v with
| Val _ -> false
| Symbol _ -> true
| Ptr (_, offset) -> is_symbolic offset
| List vs | Tuple vs -> List.exists is_symbolic vs
| Array vs -> Array.exists is_symbolic vs
| App (_, vs) -> List.exists is_symbolic vs
| Unop (_, _, v) -> is_symbolic v
| Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Triop (_, _, v1, v2, v3) ->
is_symbolic v1 || is_symbolic v2 || is_symbolic v3
| Cvtop (_, _, v) -> is_symbolic v
| Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Extract (e, _, _) -> is_symbolic e
| Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
let get_symbols (hte : t list) =
let tbl = Hashtbl.create 64 in
let rec symbols (hte : t) =
match view hte with
| Val _ -> ()
| Ptr (_, offset) -> symbols offset
| Symbol s -> Hashtbl.replace tbl s ()
| List es | Tuple es -> List.iter symbols es
| Array es -> Array.iter symbols es
| App (_, es) -> List.iter symbols es
| Unop (_, _, e1) -> symbols e1
| Binop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Triop (_, _, e1, e2, e3) ->
symbols e1;
symbols e2;
symbols e3
| Relop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Cvtop (_, _, e) -> symbols e
| Extract (e, _, _) -> symbols e
| Concat (e1, e2) ->
symbols e1;
symbols e2
in
List.iter symbols hte;
Hashtbl.fold (fun k () acc -> k :: acc) tbl []
let negate_relop (hte : t) : (t, string) Result.t =
let e =
match view hte with
| Relop (ty, Eq, e1, e2) -> Ok (Relop (ty, Ne, e1, e2))
| Relop (ty, Ne, e1, e2) -> Ok (Relop (ty, Eq, e1, e2))
| Relop (ty, Lt, e1, e2) -> Ok (Relop (ty, Ge, e1, e2))
| Relop (ty, LtU, e1, e2) -> Ok (Relop (ty, GeU, e1, e2))
| Relop (ty, Le, e1, e2) -> Ok (Relop (ty, Gt, e1, e2))
| Relop (ty, LeU, e1, e2) -> Ok (Relop (ty, GtU, e1, e2))
| Relop (ty, Gt, e1, e2) -> Ok (Relop (ty, Le, e1, e2))
| Relop (ty, GtU, e1, e2) -> Ok (Relop (ty, LeU, e1, e2))
| Relop (ty, Ge, e1, e2) -> Ok (Relop (ty, Lt, e1, e2))
| Relop (ty, GeU, e1, e2) -> Ok (Relop (ty, LtU, e1, e2))
| _ -> Error "negate_relop: not a relop."
in
Result.map make e
module Pp = struct
open Format
let pp_print_array pp_v fmt v =
let is_first = ref true in
Array.iter
(fun v ->
if !is_first then is_first := false else pp_print_string fmt " ";
pp_v fmt v )
v
let rec pp fmt (hte : t) =
match view hte with
| Val v -> Value.pp fmt v
| Ptr (base, offset) -> fprintf fmt "(Ptr (i32 %ld) %a)" base pp offset
| Symbol s -> Symbol.pp fmt s
| List v | Tuple v -> fprintf fmt "(%a)" (pp_print_list pp) v
| Array v -> fprintf fmt "(%a)" (pp_print_array pp) v
| App (`Op x, v) -> fprintf fmt "(%s %a)" x (pp_print_list pp) v
| Unop (ty, op, e) -> fprintf fmt "(%a.%a %a)" Ty.pp ty pp_unop op pp e
| Binop (ty, op, e1, e2) ->
fprintf fmt "(%a.%a %a %a)" Ty.pp ty pp_binop op pp e1 pp e2
| Triop (ty, op, e1, e2, e3) ->
fprintf fmt "(%a.%a %a %a %a)" Ty.pp ty pp_triop op pp e1 pp e2 pp e3
| Relop (ty, op, e1, e2) ->
fprintf fmt "(%a.%a %a %a)" Ty.pp ty pp_relop op pp e1 pp e2
| Cvtop (ty, op, e) -> fprintf fmt "(%a.%a %a)" Ty.pp ty pp_cvtop op pp e
| Extract (e, h, l) -> fprintf fmt "(extract %a %d %d)" pp e l h
| Concat (e1, e2) -> fprintf fmt "(++ %a %a)" pp e1 pp e2
| App _ -> assert false
let pp_list fmt (es : t list) = pp_print_list ~pp_sep:pp_print_space pp fmt es
let pp_smt fmt (es : t list) : unit =
let pp_symbols fmt syms =
pp_print_list ~pp_sep:pp_print_newline
(fun fmt sym ->
let t = Symbol.type_of sym in
fprintf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
fmt syms
in
let pp_asserts fmt es =
pp_print_list ~pp_sep:pp_print_newline
(fun fmt e -> fprintf fmt "(assert @[<h 2>%a@])" pp e)
fmt es
in
let syms = get_symbols es in
if List.length syms > 0 then fprintf fmt "%a@\n" pp_symbols syms;
if List.length es > 0 then fprintf fmt "%a@\n" pp_asserts es;
pp_print_string fmt "(check-sat)"
end
let pp = Pp.pp
let pp_list = Pp.pp_list
let pp_smt = Pp.pp_smt
let to_string e = Format.asprintf "%a" pp e
let value (v : Value.t) : t = make (Val v) [@@inline]
let unop' (ty : Ty.t) (op : unop) (hte : t) : t = make (Unop (ty, op, hte))
[@@inline]
let unop (ty : Ty.t) (op : unop) (hte : t) : t =
match view hte with
| Val v -> value (Eval.unop ty op v)
| _ -> unop' ty op hte
let binop' (ty : Ty.t) (op : binop) (hte1 : t) (hte2 : t) : t =
make (Binop (ty, op, hte1, hte2))
[@@inline]
let rec binop ty (op : binop) (hte1 : t) (hte2 : t) : t =
match (view hte1, view hte2) with
| Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
| Ptr (b1, os1), Ptr (b2, os2) -> (
match op with
| Sub when b1 = b2 -> binop ty Sub os1 os2
| _ ->
binop' ty op hte1 hte2 )
| Ptr (base, offset), _ -> (
match op with
| Add ->
let new_offset = binop (Ty_bitv 32) Add offset hte2 in
make (Ptr (base, new_offset))
| Sub ->
let new_offset = binop (Ty_bitv 32) Sub offset hte2 in
make (Ptr (base, new_offset))
| Rem ->
let rhs = value (Num (I32 base)) in
let addr = binop (Ty_bitv 32) Add rhs offset in
binop ty Rem addr hte2
| _ -> binop' ty op hte1 hte2 )
| _, Ptr (base, offset) -> (
match op with
| Add -> make (Ptr (base, binop (Ty_bitv 32) Add offset hte1))
| _ -> binop' ty op hte1 hte2 )
| Val (Num (I32 0l)), _ -> (
match op with
| Add | Or -> hte2
| And | Div | DivU | Mul | Rem | RemU -> hte1
| _ -> binop' ty op hte1 hte2 )
| _, Val (Num (I32 0l)) -> (
match op with
| Add | Or | Sub -> hte1
| And | Mul -> hte2
| _ -> binop' ty op hte1 hte2 )
| Binop (ty, op2, x, { node = Val v1; _ }), Val v2 -> (
match (op, op2) with
| Add, Add ->
let v = value (Eval.binop ty Add v1 v2) in
binop' ty Add x v
| Sub, Sub ->
let v = value (Eval.binop ty Add v1 v2) in
binop' ty Sub x v
| Mul, Mul ->
let v = value (Eval.binop ty Mul v1 v2) in
binop' ty Mul x v
| _, _ -> binop' ty op hte1 hte2 )
| _ -> binop' ty op hte1 hte2
let triop' (ty : Ty.t) (op : triop) (e1 : t) (e2 : t) (e3 : t) : t =
make (Triop (ty, op, e1, e2, e3))
[@@inline]
let triop ty (op : triop) (e1 : t) (e2 : t) (e3 : t) : t =
match (view e1, view e2, view e3) with
| Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
| Val v, _, _ -> (
match op with
| Ite -> ( match v with True -> e2 | False -> e3 | _ -> assert false )
| _ -> triop' ty op e1 e2 e3 )
| _ -> triop' ty op e1 e2 e3
let relop' (ty : Ty.t) (op : relop) (hte1 : t) (hte2 : t) : t =
make (Relop (ty, op, hte1, hte2))
[@@inline]
let rec relop ty (op : relop) (hte1 : t) (hte2 : t) : t =
match (view hte1, view hte2) with
| Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
| Ptr (b1, os1), Ptr (b2, os2) -> (
match op with
| Eq -> if b1 = b2 then relop' ty Eq os1 os2 else value False
| Ne -> if b1 = b2 then relop' ty Ne os1 os2 else value True
| (LtU | LeU | GtU | GeU) as op ->
if b1 = b2 then relop ty op os1 os2
else
value
( if Eval.relop ty op (Num (I32 b1)) (Num (I32 b2)) then True
else False )
| _ -> relop' ty op hte1 hte2 )
| Val (Num _ as n), Ptr (b, { node = Val (Num _ as o); _ }) ->
let base = Eval.binop (Ty_bitv 32) Add (Num (I32 b)) o in
value (if Eval.relop ty op n base then True else False)
| Ptr (b, { node = Val (Num _ as o); _ }), Val (Num _ as n) ->
let base = Eval.binop (Ty_bitv 32) Add (Num (I32 b)) o in
value (if Eval.relop ty op base n then True else False)
| _ -> relop' ty op hte1 hte2
let cvtop' (ty : Ty.t) (op : cvtop) (hte : t) : t = make (Cvtop (ty, op, hte))
[@@inline]
let cvtop ty (op : cvtop) (hte : t) : t =
match view hte with
| Val v -> value (Eval.cvtop ty op v)
| _ -> cvtop' ty op hte
let nland64 (x : int64) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int64.logand x' acc
else loop x' (n' - 1) Int64.(logor (shift_left acc 8) 0xffL)
in
loop x n 0L
let nland32 (x : int32) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int32.logand x' acc
else loop x' (n' - 1) Int32.(logor (shift_left acc 8) 0xffl)
in
loop x n 0l
let (hte : t) ~(high : int) ~(low : int) : t =
make (Extract (hte, high, low))
[@@inline]
let (hte : t) ~(high : int) ~(low : int) : t =
match view hte with
| Val (Num (I64 x)) ->
let x' = nland64 (Int64.shift_right x (low * 8)) (high - low) in
value (Num (I64 x'))
| _ -> if high - low = size (ty hte) then hte else extract' hte ~high ~low
let concat' (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
let concat (msb : t) (lsb : t) : t =
match (view msb, view lsb) with
| ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
, Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0
| ( Extract ({ node = Val (Num (I32 x2)); _ }, h2, l2)
, Extract ({ node = Val (Num (I32 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland32 (Int32.shift_right x1 (l1 * 8)) d1 in
let x2' = nland32 (Int32.shift_right x2 (l2 * 8)) d2 in
let x = Int32.(logor (shift_left x2' (d1 * 8)) x1') in
extract' (value (Num (I32 x))) ~high:(d1 + d2) ~low:0
| Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
extract' s1 ~high:h ~low:l
| ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
, Concat
({ node = Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1); _ }, se) )
when not (is_num se) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
concat' (extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0) se
| _ -> concat' msb lsb
let rec simplify_expr ?( = true) (hte : t) : t =
match view hte with
| Val _ | Symbol _ -> hte
| Ptr (base, offset) -> make @@ Ptr (base, simplify_expr offset)
| List es -> make @@ List (List.map simplify_expr es)
| Array es -> make @@ Array (Array.map simplify_expr es)
| Tuple es -> make @@ Tuple (List.map simplify_expr es)
| App (x, es) -> make @@ App (x, List.map simplify_expr es)
| Unop (ty, op, e) ->
let e = simplify_expr e in
unop ty op e
| Binop (ty, op, e1, e2) ->
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
binop ty op e1 e2
| Relop (ty, op, e1, e2) ->
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
relop ty op e1 e2
| Triop (ty, op, c, e1, e2) ->
let c = simplify_expr c in
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
triop ty op c e1 e2
| Cvtop (ty, op, e) ->
let e = simplify_expr e in
cvtop ty op e
| Extract (s, high, low) ->
if not rm_extract then hte else extract s ~high ~low
| Concat (e1, e2) ->
let msb = simplify_expr ~rm_extract:false e1 in
let lsb = simplify_expr ~rm_extract:false e2 in
concat msb lsb
let simplify (hte : t) : t =
let rec loop x =
let simpl_x = simplify_expr x in
if equal x simpl_x then simpl_x else loop simpl_x
in
loop hte
module Bool = struct
let of_val = function
| Val True -> Some true
| Val False -> Some false
| _ -> None
let v b = make (match b with true -> Val True | false -> Val False)
let not (b : t) =
match of_val (view b) with
| Some b -> v (not b)
| None -> (
match view b with
| Unop (Ty_bool, Not, cond) -> cond
| _ -> unop' Ty_bool Not b )
let ( = ) (b1 : t) (b2 : t) =
match (view b1, view b2) with
| Val True, Val True | Val False, Val False -> value True
| _ -> relop' Ty_bool Eq b1 b2
let distinct (b1 : t) (b2 : t) =
match (view b1, view b2) with
| Val True, Val False | Val False, Val True -> value True
| _ -> relop' Ty_bool Ne b1 b2
let and_ (b1 : t) (b2 : t) =
match (of_val (view b1), of_val (view b2)) with
| Some b1, Some b2 -> v (b1 && b2)
| Some true, _ -> b2
| _, Some true -> b1
| Some false, _ | _, Some false -> value False
| _ -> binop' Ty_bool And b1 b2
let or_ (b1 : t) (b2 : t) =
match (of_val (view b1), of_val (view b2)) with
| Some b1, Some b2 -> v (b1 || b2)
| Some false, _ -> b2
| _, Some false -> b1
| Some true, _ | _, Some true -> value True
| _ -> binop' Ty_bool Or b1 b2
let ite (c : t) (r1 : t) (r2 : t) = triop Ty_bool Ite c r1 r2
end
module Make (T : sig
type elt
val ty : Ty.t
val num : elt -> Num.t
end) =
struct
let v i = value (Num (T.num i))
let sym x = mk_symbol Symbol.(x @: T.ty)
let ( ~- ) e = unop T.ty Neg e
let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
let ( > ) e1 e2 = relop T.ty Gt e1 e2
let ( >= ) e1 e2 = relop T.ty Ge e1 e2
let ( < ) e1 e2 = relop T.ty Lt e1 e2
let ( <= ) e1 e2 = relop T.ty Le e1 e2
end
module Bitv = struct
module I8 = Make (struct
type elt = int
let ty = Ty_bitv 8
let num i = Num.I8 i
end)
module I32 = Make (struct
type elt = int32
let ty = Ty_bitv 32
let num i = Num.I32 i
end)
module I64 = Make (struct
type elt = int64
let ty = Ty_bitv 64
let num i = Num.I64 i
end)
end
module Fpa = struct
module F32 = struct
include Make (struct
type elt = float
let ty = Ty_fp 32
let num f = Num.F32 (Int32.bits_of_float f)
end)
let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
end
module F64 = struct
include Make (struct
type elt = float
let ty = Ty_fp 64
let num f = Num.F64 (Int64.bits_of_float f)
end)
let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
end
end