package sklearn

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Dummy.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.dummy"

let get_py name = Py.Module.get __wrap_namespace name
module DummyClassifier = struct
type tag = [`DummyClassifier]
type t = [`BaseEstimator | `ClassifierMixin | `DummyClassifier | `MultiOutputMixin | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_multi_output x = (x :> [`MultiOutputMixin] Obj.t)
                  let create ?strategy ?random_state ?constant () =
                     Py.Module.get_function_with_keywords __wrap_namespace "DummyClassifier"
                       [||]
                       (Wrap_utils.keyword_args [("strategy", Wrap_utils.Option.map strategy Py.String.of_string); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("constant", Wrap_utils.Option.map constant (function
| `S x -> Py.String.of_string x
| `Arr x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
))])
                       |> of_pyobject
let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x )); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_log_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_log_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x ))])

let predict_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
                  let score ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords (to_pyobject self) "score"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> (function
| `Arr x -> Np.Obj.to_pyobject x
| `None -> Py.none
))); ("y", Some(y |> Np.Obj.to_pyobject))])
                       |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_classes_" with
  | None -> failwith "attribute n_classes_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let n_classes_ self = match n_classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let class_prior_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "class_prior_" with
  | None -> failwith "attribute class_prior_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let class_prior_ self = match class_prior_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_outputs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_outputs_" with
  | None -> failwith "attribute n_outputs_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_outputs_ self = match n_outputs_opt self with
  | None -> raise Not_found
  | Some x -> x

let sparse_output_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "sparse_output_" with
  | None -> failwith "attribute sparse_output_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Bool.to_bool x)

let sparse_output_ self = match sparse_output_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module DummyRegressor = struct
type tag = [`DummyRegressor]
type t = [`BaseEstimator | `DummyRegressor | `MultiOutputMixin | `Object | `RegressorMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_regressor x = (x :> [`RegressorMixin] Obj.t)
let as_multi_output x = (x :> [`MultiOutputMixin] Obj.t)
                  let create ?strategy ?constant ?quantile () =
                     Py.Module.get_function_with_keywords __wrap_namespace "DummyRegressor"
                       [||]
                       (Wrap_utils.keyword_args [("strategy", Wrap_utils.Option.map strategy Py.String.of_string); ("constant", Wrap_utils.Option.map constant (function
| `F x -> Py.Float.of_float x
| `Arr x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("quantile", Wrap_utils.Option.map quantile Py.Float.of_float)])
                       |> of_pyobject
let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x )); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ?return_std ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("return_std", Wrap_utils.Option.map return_std Py.Bool.of_bool); ("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
                  let score ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords (to_pyobject self) "score"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> (function
| `Arr x -> Np.Obj.to_pyobject x
| `None -> Py.none
))); ("y", Some(y |> Np.Obj.to_pyobject))])
                       |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let constant_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "constant_" with
  | None -> failwith "attribute constant_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let constant_ self = match constant_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_outputs_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_outputs_" with
  | None -> failwith "attribute n_outputs_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_outputs_ self = match n_outputs_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
                  let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?estimator ~array () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_array"
                       [||]
                       (Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `S x -> Py.String.of_string x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `C -> Py.String.of_string "C"
| `F -> Py.String.of_string "F"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("array", Some(array ))])

let check_consistent_length arrays =
   Py.Module.get_function_with_keywords __wrap_namespace "check_consistent_length"
     (Array.of_list @@ List.concat [(List.map Wrap_utils.id arrays)])
     []

                  let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_is_fitted"
                       [||]
                       (Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `S x -> Py.String.of_string x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `Arr x -> Np.Obj.to_pyobject x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])

                  let check_random_state seed =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_random_state"
                       [||]
                       (Wrap_utils.keyword_args [("seed", Some(seed |> (function
| `Optional x -> (function
| `I x -> Py.Int.of_int x
| `None -> Py.none
) x
| `RandomState x -> Wrap_utils.id x
)))])

                  let class_distribution ?sample_weight ~y () =
                     Py.Module.get_function_with_keywords __wrap_namespace "class_distribution"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("y", Some(y |> (function
| `Sparse_matrix_of_size x -> Wrap_utils.id x
| `Arr x -> Np.Obj.to_pyobject x
)))])
                       |> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1)), (Wrap_utils.id (Py.Tuple.get x 2))))
OCaml

Innovation. Community. Security.