package sklearn

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Module Model_selection.ShuffleSplitSource

Sourcetype tag = [
  1. | `ShuffleSplit
]
Sourcetype t = [ `BaseShuffleSplit | `Object | `ShuffleSplit ] Obj.t
Sourceval of_pyobject : Py.Object.t -> t
Sourceval to_pyobject : [> tag ] Obj.t -> Py.Object.t
Sourceval as_shuffle_split : t -> [ `BaseShuffleSplit ] Obj.t
Sourceval create : ?n_splits:int -> ?test_size:[ `I of int | `F of float ] -> ?train_size:[ `I of int | `F of float ] -> ?random_state:int -> unit -> t

Random permutation cross-validator

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets.

Read more in the :ref:`User Guide <cross_validation>`.

Parameters ---------- n_splits : int, default=10 Number of re-shuffling & splitting iterations.

test_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If ``train_size`` is also None, it will be set to 0.1.

train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.

random_state : int or RandomState instance, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`.

Examples -------- >>> import numpy as np >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([1, 2], [3, 4], [5, 6], [7, 8], [3, 4], [5, 6]) >>> y = np.array(1, 2, 1, 2, 1, 2) >>> rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 5 >>> print(rs) ShuffleSplit(n_splits=5, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print('TRAIN:', train_index, 'TEST:', test_index) TRAIN: 1 3 0 4 TEST: 5 2 TRAIN: 4 0 2 5 TEST: 1 3 TRAIN: 1 2 4 0 TEST: 3 5 TRAIN: 3 4 1 0 TEST: 5 2 TRAIN: 3 5 1 0 TEST: 2 4 >>> rs = ShuffleSplit(n_splits=5, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print('TRAIN:', train_index, 'TEST:', test_index) TRAIN: 1 3 0 TEST: 5 2 TRAIN: 4 0 2 TEST: 1 3 TRAIN: 1 2 4 TEST: 3 5 TRAIN: 3 4 1 TEST: 5 2 TRAIN: 3 5 1 TEST: 2 4

Sourceval get_n_splits : ?x:Py.Object.t -> ?y:Py.Object.t -> ?groups:Py.Object.t -> [> tag ] Obj.t -> int

Returns the number of splitting iterations in the cross-validator

Parameters ---------- X : object Always ignored, exists for compatibility.

y : object Always ignored, exists for compatibility.

groups : object Always ignored, exists for compatibility.

Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator.

Sourceval split : ?y:[> `ArrayLike ] Np.Obj.t -> ?groups:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> ([> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t) Seq.t

Generate indices to split data into training and test set.

Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features.

y : array-like of shape (n_samples,) The target variable for supervised learning problems.

groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set.

Yields ------ train : ndarray The training set indices for that split.

test : ndarray The testing set indices for that split.

Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer.

Sourceval to_string : t -> string

Print the object to a human-readable representation.

Sourceval show : t -> string

Print the object to a human-readable representation.

Sourceval pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.