1-D smoothing spline fit to a given set of data points.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s` specifies the number of knots by specifying a smoothing condition.
Parameters ---------- x : (N,) array_like 1-D array of independent input data. Must be increasing; must be strictly increasing if `s` is 0. y : (N,) array_like 1-D array of dependent input data, of the same length as `x`. w : (N,) array_like, optional Weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox=x[0], x[-1]
``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. Default is `k` = 3, a cubic spline. s : float or None, optional Positive smoothing factor used to choose the number of knots. Number of knots will be increased until the smoothing condition is satisfied::
sum((wi
* (yi
-spl(xi
)))**2, axis=0) <= s
If None (default), ``s = len(w)`` which should be a good value if ``1/wi
`` is an estimate of the standard deviation of ``yi
``. If 0, spline will interpolate through all data points. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False.
See Also -------- InterpolatedUnivariateSpline : Subclass with smoothing forced to 0 LSQUnivariateSpline : Subclass in which knots are user-selected instead of being set by smoothing condition splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation
Notes ----- The number of data points must be larger than the spline degree `k`.
**NaN handling**: If the input arrays contain ``nan`` values, the result is not useful, since the underlying spline fitting routines cannot deal with ``nan``. A workaround is to use zero weights for not-a-number data points:
>>> from scipy.interpolate import UnivariateSpline >>> x, y = np.array(1, 2, 3, 4
), np.array(1, np.nan, 3, 4
) >>> w = np.isnan(y) >>> yw
= 0. >>> spl = UnivariateSpline(x, y, w=~w)
Notice the need to replace a ``nan`` by a numerical value (precise value does not matter as long as the corresponding weight is zero.)
Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> plt.plot(x, y, 'ro', ms=5)
Use the default value for the smoothing parameter:
>>> spl = UnivariateSpline(x, y) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3)
Manually change the amount of smoothing:
>>> spl.set_smoothing_factor(0.5) >>> plt.plot(xs, spl(xs), 'b', lw=3) >>> plt.show()