OCaml DSL for 3D solid modelling in OpenSCAD
Module Scad_ml . Quaternion
type t = float * float * float * float
val id : t

The identity quaternion: (0., 0., 0., 1.)

val make : Vec3.t -> float -> t

make ax angle

Create a quaternion representing a rotation of angle (in radians) around the vector ax.

Basic Arithmetic

val add : t -> t -> t

add a b

Hadamard (element-wise) addition of quaternions a and b.

val sub : t -> t -> t

sub a b

Hadamard (element-wise) subtraction of quaternion b from a.

val mul : t -> t -> t

mul a b

Quaternion multiplication of a and b.

val negate : t -> t

negate t

Negation of all elements of t.

val add_scalar : t -> float -> t

add_scalar t s

Add s to the magnitude of t, leaving the imaginary parts unchanged.

val sub_scalar : t -> float -> t

sub_scalar t s

Subtract s from the magnitude of t, leaving the imaginary parts unchanged.

val scalar_sub_quat : t -> float -> t

scalar_sub_quat t s

Negate the imaginary parts of t, and subtract the magnitude from s to obtain the new magnitude.

val mul_scalar : t -> float -> t

mul_scalar t s

Element-wise multiplication of t by s.

val div_scalar : t -> float -> t

div_scalar t s

Element-wise division of t by s.

Vector Math

val norm : t -> float

norm t

Calculate the vector norm (a.k.a. magnitude) of t.

val normalize : t -> t

normalize t

Normalize t to a quaternion for which the magnitude is equal to 1. e.g. norm (normalize t) = 1.

val dot : t -> t -> float

dot a b

Vector dot product of a and b.

val conj : t -> t

conj t

Take the conjugate of the quaternion t, negating the imaginary parts (x, y, and z) of t, leaving the magnitude unchanged.

val distance : t -> t -> float

distance a b

Calculate the magnitude of the difference (Hadamard subtraction) between a and b.

Matrix Conversions

val of_rotmatrix : RotMatrix.t -> t
val to_multmatrix : t -> MultMatrix.t


val to_string : t -> string
val get_x : t -> float
val get_y : t -> float
val get_z : t -> float
val get_w : t -> float
val slerp : t -> t -> float -> t

slerp a b step

Spherical linear interpotation. Adapted from pyquaternion.

Vector Transformations

val rotate_vec3 : t -> Vec3.t -> Vec3.t

rotate_vec3 t v

Rotate v with the quaternion t.

val rotate_vec3_about_pt : t -> Vec3.t -> Vec3.t -> Vec3.t

rotate_vec3_about_pt t p v

Translates v along the vector p, rotating the resulting vector with the quaternion t, and finally, moving back along the vector p. Functionally, rotating about the point in space arrived at by the initial translation along the vector p.

val alignment : Vec3.t -> Vec3.t -> t

alignment a b

Calculate a quaternion that would bring a into alignment with b.