package rune

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file rune_jit.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
(* rune_jit.ml *)

module Ir = Ir
module Dtype = Ir.Dtype
module Var = Ir.Var
module Backend_intf = Backend_intf

type 'a kernel_artifact = {
  kernel_id : int;
  kernel_name : string;
  compiled : 'a; (* backend callable kernel *)
  arg_order : Var.t list; (* inputs first, then outputs *)
  global_dims : int array; (* [|gx; gy; gz|] from Scheduled.context *)
  local_dims : int array option;
}

type 'a exe_internal = {
  kernels : 'a kernel_artifact list;
  graph_meta : (Var.t, Ir.var_metadata) Hashtbl.t;
  graph_outputs : Var.t list;
}

type 'a executable = Executable of 'a exe_internal

(* helper: monadic left-fold *)
let rec result_fold_left f init = function
  | [] -> Ok init
  | x :: xs ->
      let ( let* ) = Result.bind in
      let* acc = f init x in
      result_fold_left f acc xs

(* ───── LEGACY (optional) tinygrad-style path ───── *)

let compile_legacy (type callable_kernel_native)
    ~(backend :
       (module Backend_intf.S
          with type callable_kernel_native = callable_kernel_native))
    (graph : Ir.graph_t) =
  let ( let* ) = Result.bind in
  let module B =
    (val backend
        : Backend_intf.S
        with type callable_kernel_native = callable_kernel_native)
  in
  let specs = Grouper.group graph in
  let dev = B.Device_info.get_default () in
  let opts = B.Compiler.default_options dev in

  let compile_kernel (spec : Grouper.cluster_t) =
    let lowered =
      Lowerer.lower_kernel ~kernel_spec:spec
        ~original_graph_vars_metadata:graph.vars_metadata
    in
    let src =
      B.Renderer.render ~device_info:dev ~lowered_ir:lowered
        ~kernel_name:spec.name
    in
    let* art =
      B.Compiler.compile ~device_info:dev ~source_code:src ~options:opts
    in
    let* kern = B.Runtime.get_kernel ~artifact:art ~kernel_name:spec.name in
    Ok
      {
        kernel_id = -1;
        kernel_name = spec.name;
        compiled = kern;
        arg_order = spec.inputs @ spec.outputs;
        global_dims = [| 128; 1; 1 |];
        local_dims = None;
      }
  in
  let* kernels =
    result_fold_left
      (fun acc spec ->
        let* k = compile_kernel spec in
        Ok (k :: acc))
      [] specs
  in
  Ok
    (Executable
       {
         kernels = List.rev kernels;
         graph_meta = graph.vars_metadata;
         graph_outputs = graph.output_vars;
       })

(* ───── NEW: Scheduled IR pipeline ───── *)

let compile (type callable_kernel_native)
    ~(backend :
       (module Backend_intf.S
          with type callable_kernel_native = callable_kernel_native))
    (graph : Ir.graph_t) =
  let ( let* ) = Result.bind in
  let module B =
    (val backend
        : Backend_intf.S
        with type callable_kernel_native = callable_kernel_native)
  in
  (* 1) Build Scheduled IR *)
  let scheduled : Ir.Scheduled.graph_t = Schedule.build graph in
  let dev = B.Device_info.get_default () in
  let opts = B.Compiler.default_options dev in

  (* 2) Compile scheduled items (only kernels for now) *)
  let compile_item (it : Ir.Scheduled.schedule_item) =
    match it.operation with
    | Ir.Scheduled.S_Kernel
        { kernel_id; kernel_name; ops; inputs; outputs; context; _ } ->
        (* Bridge to existing Lowerer: synthesize a cluster_t *)
        let input_vars =
          List.map (fun (b : Ir.Scheduled.buffer_info) -> b.buf_var) inputs
        in
        let output_vars =
          List.map (fun (b : Ir.Scheduled.buffer_info) -> b.buf_var) outputs
        in
        let spec : Grouper.cluster_t =
          {
            name = kernel_name;
            nodes = ops;
            inputs = input_vars;
            outputs = output_vars;
            vars_metadata = scheduled.vars_metadata;
          }
        in
        let lowered =
          Lowerer.lower_kernel ~kernel_spec:spec
            ~original_graph_vars_metadata:scheduled.vars_metadata
        in
        let src =
          B.Renderer.render ~device_info:dev ~lowered_ir:lowered ~kernel_name
        in
        let* art =
          B.Compiler.compile ~device_info:dev ~source_code:src ~options:opts
        in
        let* kern = B.Runtime.get_kernel ~artifact:art ~kernel_name in
        Ok
          (Some
             {
               kernel_id;
               kernel_name;
               compiled = kern;
               arg_order = input_vars @ output_vars;
               global_dims = context.global_dims;
               local_dims = Some context.local_dims;
             })
    | _ ->
        (* Skip non-kernel items (transfers/sync) until Multi is wired to
           runtime *)
        Ok None
  in

  let* built =
    result_fold_left
      (fun acc it ->
        let* kopt = compile_item it in
        Ok (kopt :: acc))
      []
      (Array.to_list scheduled.schedule_items)
  in
  let kernels = List.filter_map (fun x -> x) (List.rev built) in

  Ok
    (Executable
       {
         kernels;
         graph_meta = scheduled.vars_metadata;
         graph_outputs = graph.output_vars;
       })

(* ───── Execute ───── *)

let execute (type device_buffer_native callable_kernel_native)
    ~(backend :
       (module Backend_intf.S
          with type device_buffer_native = device_buffer_native
           and type callable_kernel_native = callable_kernel_native))
    (Executable exe) ~inputs ~(outputs : Var.t list) =
  let ( let* ) = Result.bind in
  let module B = (val backend) in
  let dev = B.Device_info.get_default () in
  let live : (Var.t, B.any_device_buffer) Hashtbl.t = Hashtbl.copy inputs in

  (* Allocate a buffer for var v if missing, using graph_meta *)
  let ensure_buffer (v : Var.t) : (B.any_device_buffer, string) result =
    match Hashtbl.find_opt live v with
    | Some b -> Ok b
    | None -> (
        match Hashtbl.find_opt exe.graph_meta v with
        | None -> Error ("Missing metadata for " ^ Var.to_string v)
        | Some { dtype = Dtype.Any_Dtype dt; shape; _ } ->
            let bytes =
              let n =
                Array.fold_left ( * ) 1
                  (if Array.length shape = 0 then [| 1 |] else shape)
              in
              n * Dtype.sizeof_elt dt
            in
            let* buf =
              B.Runtime.allocate_buffer ~device_info:dev ~size_in_bytes:bytes
                ~dtype:dt
            in
            let any = Backend_intf.Any_Device_Buffer buf in
            Hashtbl.add live v any;
            Ok any)
  in

  let launch (k : _ kernel_artifact) =
    let* args =
      result_fold_left
        (fun acc v ->
          let* b = ensure_buffer v in
          Ok (b :: acc))
        [] k.arg_order
    in
    B.Runtime.launch_kernel ~device_info:dev ~global_dims:k.global_dims
      ?local_dims:k.local_dims ~args:(List.rev args) k.compiled
  in

  let* () = result_fold_left (fun () k -> launch k) () exe.kernels in

  (* Collect requested outputs *)
  let result_tbl = Hashtbl.create (List.length outputs) in
  List.iter
    (fun v ->
      match Hashtbl.find_opt live v with
      | Some b -> Hashtbl.add result_tbl v b
      | None -> (
          (* If a requested output didn’t exist yet, allocate an empty buffer so
             caller can fill *)
          match Hashtbl.find_opt exe.graph_meta v with
          | Some { dtype = Dtype.Any_Dtype dt; shape; _ } -> (
              let bytes =
                let n =
                  Array.fold_left ( * ) 1
                    (if Array.length shape = 0 then [| 1 |] else shape)
                in
                n * Dtype.sizeof_elt dt
              in
              match
                B.Runtime.allocate_buffer ~device_info:dev ~size_in_bytes:bytes
                  ~dtype:dt
              with
              | Ok buf ->
                  let any = Backend_intf.Any_Device_Buffer buf in
                  Hashtbl.add result_tbl v any;
                  Hashtbl.add live v any
              | Error _ -> ())
          | None -> ()))
    outputs;
  Ok result_tbl

(* ───── convenience wrappers ───── *)

let allocate_buffer (type device_buffer_native)
    ~(backend :
       (module Backend_intf.S
          with type device_buffer_native = device_buffer_native)) ~size_in_bytes
    ~(dtype : 'a Dtype.t) =
  let module B = (val backend) in
  let device_info = B.Device_info.get_default () in
  B.Runtime.allocate_buffer ~device_info ~size_in_bytes ~dtype

let copy_to_device (type device_buffer_native)
    ~(backend :
       (module Backend_intf.S
          with type device_buffer_native = device_buffer_native)) ~dest_buffer
    ~host =
  let module B = (val backend) in
  let bytes = Bigarray.Array1.size_in_bytes host in
  if bytes = 0 then Ok ()
  else
    let ptr =
      Ctypes.(raw_address_of_ptr (to_voidp (bigarray_start array1 host)))
    in
    B.Runtime.copy_to_device ~dest_buffer ~host_data:ptr
      ~host_data_offset_bytes:0 ~copy_size_bytes:bytes

let copy_from_device (type device_buffer_native)
    ~(backend :
       (module Backend_intf.S
          with type device_buffer_native = device_buffer_native)) ~src_buffer
    ~dest =
  let module B = (val backend) in
  let bytes = Bigarray.Array1.size_in_bytes dest in
  if bytes = 0 then Ok ()
  else
    let ptr =
      Ctypes.(raw_address_of_ptr (to_voidp (bigarray_start array1 dest)))
    in
    B.Runtime.copy_from_device ~src_buffer ~host_dest_ptr:ptr
      ~device_data_offset_bytes:0 ~copy_size_bytes:bytes

(* Internal modules exposed for testing *)
module Internal = struct
  module Grouper = Grouper
  module Lowerer = Lowerer
end