Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
rope.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
(* File: rope.ml Copyright (C) 2007 Christophe Troestler email: Christophe.Troestler@umh.ac.be WWW: http://math.umh.ac.be/an/software/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.1 or later as published by the Free Software Foundation, with the special exception on linking described in the file LICENSE. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the file LICENSE for more details. *) (** Rope implementation inspired from : Hans Boehm, Russ Atkinson, Michael Plass, "Ropes: an alternative to strings", Software Practice and Experience 25, vol. 12 (1995), pp. 1315-1330. http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf *) (* TODO: - Regexp (maybe using Jérôme Vouillon regexp lib ? http://www.pps.jussieu.fr/~vouillon/) - Camomille interop. (with phantom types for encoding ??) See also the OSR http://cocan.org/osr/unicode_library *) let min i j = if (i:int) < j then i else j let max i j = if (i:int) > j then i else j exception Out_of_bounds of string (* One assumes throughout that the length is a representable integer. Public functions that allow to construct larger ropes must check this. *) type t = | Sub of string * int * int (* (s, i0, len) where only s.[i0 .. i0+len-1] is used by the rope. [len = 0] is forbidden, unless the rope has 0 length (i.e. it is empty). Experiments show that this is faster than [Sub of string] and does not really use more memory -- because splices share all nodes. *) | Concat of int * int * t * int * t (* [(height, length, left, left_length, right)]. This asymmetry between left and right was chosen because the full length and the left length are more often needed that the right length. *) type rope = t let small_rope_length = 32 (** Use this as leaf when creating fresh leaves. Also sub-ropes of length [<= small_rope_length] may be flattened by [concat2]. This value must be quite small, typically comparable to the size of a [Concat] node. *) let make_length_pow2 = 10 let make_length = 1 lsl make_length_pow2 let max_flatten_length = 1024 (** When deciding whether to flatten a rope, only those with length [<= max_flatten_length] will be. *) let extract_sub_length = small_rope_length / 2 (** When balancing, copy the substrings with this length or less (=> release the original string). *) let level_flatten = 12 (** When balancing, flatten the rope at level [level_flatten]. The sum of [min_length.(n)], [0 <= n <= level_flatten] must be of te same order as [max_flatten_length]. *) (* Fibonacci numbers $F_{n+2}$. By definition, a NON-EMPTY rope [r] is balanced iff [length r >= min_length.(height r)]. [max_height] is the first height at which the fib. number overflow the integer range. *) let min_length, max_height = (* Since F_{n+2} >= ((1 + sqrt 5)/2)^n, we know F_{d+2} will overflow: *) let d = (3 * Sys.word_size) / 2 in let m = Array.make d max_int in (* See [add_nonempty_to_forest] for the reason for [max_int] *) let prev = ref 0 and last = ref 1 and i = ref 0 in try while !i < d - 1 do let curr = !last + !prev in if curr < !last (* overflow *) then raise Exit; m.(!i) <- curr; prev := !last; last := curr; incr i done; assert false with Exit -> m, !i let rebalancing_height = min (max_height - 1) 60 (** Beyond this height, implicit balance will be done. This value allows gross inefficiencies while not being too time consuming. For example, explicit rebalancing did not really improve the running time on the ICFP 2007 task. *) (* 32 bits: max_height - 1 = 42 *) let empty = Sub("", 0, 0) let length = function | Sub(_, _, len) -> len | Concat(_,len,_,_,_) -> len let height = function | Sub(_,_,_) -> 0 | Concat(h,_,_,_,_) -> h let is_empty = function | Sub(_, _, len) -> len = 0 | _ -> false let is_not_empty = function | Sub(_, _, len) -> len <> 0 | _ -> true (* For debugging purposes and judging the balancing *) let print = let rec map_left = function | [] -> [] | [x] -> ["/" ^ x] | x :: tl -> (" " ^ x) :: map_left tl in let map_right = function | [] -> [] | x :: tl -> ("\\" ^ x) :: List.map (fun r -> " " ^ r) tl in let rec leaves_list = function | Sub(s, i0, len) -> [String.sub s i0 len] | Concat(_,_, l,_, r) -> map_left(leaves_list l) @ map_right(leaves_list r) in fun r -> List.iter print_endline (leaves_list r) ;; let of_string s = Sub(s, 0, String.length s) (* safe: string is now immutable *) (* Since we will need to copy the string anyway, let us take this opportunity to split it in small chunks for easier further sharing. In order to minimize the height, we use a simple bisection scheme. *) let rec unsafe_of_substring s i len = if len <= small_rope_length then Sub(String.sub s i len, 0, len) else let len' = len / 2 in let i' = i + len' in let left = unsafe_of_substring s i len' and right = unsafe_of_substring s i' (len - len') in let h = 1 + max (height left) (height right) in let ll = length left in Concat(h, ll + length right, left, ll, right) let of_substring s i len = let len_s = String.length s in if i < 0 || len < 0 || i > len_s - len then invalid_arg "Rope.of_substring"; (* If only a small percentage of the string is not in the rope, do not cut the string in small pieces. The case of small lengths is managed by [unsafe_of_substring]. *) if len >= len_s - (len / 10) then Sub(s, i, len) else unsafe_of_substring s i len let of_char c = Sub(String.make 1 c, 0, 1) (* Construct a rope from [n-1] copies of a call to [gen ofs len] of length [len = make_length] and a last call with the remainder length. So the tree has [n] leaves [Sub]. The strings returned by [gen ofs len] may be longer than [len] of only the first [len] chars will be used. *) let rec make_of_gen gen ofs len ~n = if n <= 1 then if len > 0 then Sub(gen ofs len, 0, len) else empty else let nl = n / 2 in let ll = nl * max_flatten_length in let l = make_of_gen gen ofs ll ~n:nl in let r = make_of_gen gen (ofs + ll) (len - ll) ~n:(n - nl) in Concat(1 + max (height l) (height r), len, l, ll, r) let make_length_mask = make_length - 1 let make_n_chunks len = if len land make_length_mask = 0 then len lsr make_length_pow2 else len lsr make_length_pow2 + 1 let make len c = if len < 0 then failwith "Rope.make: len must be >= 0"; if len <= make_length then Sub(String.make len c, 0, len) else let base = String.make make_length c in make_of_gen (fun _ _ -> base) 0 len ~n:(make_n_chunks len) let init len f = if len < 0 then failwith "Rope.init: len must be >= 0"; if len <= make_length then Sub(String.init len f, 0, len) else (* Do not use String.init to avoid creating a closure. *) let gen ofs len = let b = Bytes.create len in for i = 0 to len - 1 do Bytes.set b i (f (ofs + i)) done; Bytes.unsafe_to_string b in make_of_gen gen 0 len ~n:(make_n_chunks len) (* [copy_to_subbytes t ofs r] copy the rope [r] to the byte range [t.[ofs .. ofs+(length r)-1]]. It is assumed that [t] is long enough. (This function could be a one liner with [iteri] but we want to use [Bytes.blit_string] for efficiency.) *) let rec copy_to_subbytes t ofs = function | Sub(s, i0, len) -> Bytes.blit_string s i0 t ofs len | Concat(_, _, l,ll, r) -> copy_to_subbytes t ofs l; copy_to_subbytes t (ofs + ll) r let to_string = function | Sub(s, i0, len) -> (* Optimize when the rope hold a single string. *) if i0 = 0 && len = String.length s then s else String.sub s i0 len | r -> let len = length r in if len > Sys.max_string_length then failwith "Rope.to_string: rope length > Sys.max_string_length"; let t = Bytes.create len in copy_to_subbytes t 0 r; Bytes.unsafe_to_string t (* Similar to [copy_to_subbytes] do more work to allow specifying a range of [src]. *) let rec unsafe_blit src srcofs dst dstofs len = match src with | Sub(s, i0, _) -> String.blit s (i0 + srcofs) dst dstofs len | Concat(_, _, l, ll, r) -> let rofs = srcofs - ll in if rofs >= 0 then unsafe_blit r rofs dst dstofs len else let llen = - rofs in (* # of chars after [srcofs] in the left rope *) if len <= llen then unsafe_blit l srcofs dst dstofs len else (* len > llen *) ( unsafe_blit l srcofs dst dstofs llen; unsafe_blit r 0 dst (dstofs + llen) (len - llen); ) let blit src srcofs dst dstofs len = if len < 0 then failwith "Rope.blit: len >= 0 required"; if srcofs < 0 || srcofs > length src - len then failwith "Rope.blit: not a valid range of src"; if dstofs < 0 || dstofs > Bytes.length dst - len then failwith "Rope.blit: not a valid range of dst"; unsafe_blit src srcofs dst dstofs len (* Flatten a rope (avoids unecessary copying). *) let flatten = function | Sub(_,_,_) as r -> r | r -> let len = length r in assert(len <= Sys.max_string_length); let t = Bytes.create len in copy_to_subbytes t 0 r; Sub(Bytes.unsafe_to_string t, 0, len) let rec get rope i = match rope with | Sub(s, i0, len) -> if i < 0 || i >= len then raise(Out_of_bounds "Rope.get") else s.[i0 + i] | Concat(_,_, l, left_len, r) -> if i < left_len then get l i else get r (i - left_len) let rec iter f = function | Sub(s, i0, len) -> for i = i0 to i0 + len - 1 do f s.[i] done | Concat(_, _, l,_, r) -> iter f l; iter f r let rec iteri_rec f init = function | Sub(s, i0, len) -> let offset = init - i0 in for i = i0 to i0 + len - 1 do f (i + offset) s.[i] done | Concat(_, _, l,ll, r) -> iteri_rec f init l; iteri_rec f (init + ll) r let iteri f r = ignore(iteri_rec f 0 r) let rec map ~f = function | Sub(s, i0, len) -> let b = Bytes.create len in for i = 0 to len - 1 do Bytes.set b i (f (String.unsafe_get s (i0 + i))) done; Sub(Bytes.unsafe_to_string b, 0, len) | Concat(h, len, l, ll, r) -> let l = map ~f l in let r = map ~f r in Concat(h, len, l, ll, r) let rec mapi_rec ~f idx0 = function | Sub(s, i0, len) -> let b = Bytes.create len in for i = 0 to len - 1 do Bytes.set b i (f (idx0 + i) s.[i0 + i]) done; Sub(Bytes.unsafe_to_string b, 0, len) | Concat(h, len, l, ll, r) -> let l = mapi_rec ~f idx0 l in let r = mapi_rec ~f (idx0 + ll) r in Concat(h, len, l, ll, r) let mapi ~f r = mapi_rec ~f 0 r (** Balancing ***********************************************************************) (* Fast, no fuss, concatenation. *) let balance_concat rope1 rope2 = let len1 = length rope1 and len2 = length rope2 in if len1 = 0 then rope2 else if len2 = 0 then rope1 else let h = 1 + max (height rope1) (height rope2) in Concat(h, len1 + len2, rope1, len1, rope2) (* Invariants for [forest]: 1) The concatenation of the forest (in decreasing order) with the unscanned part of the rope is equal to the rope being balanced. 2) All trees in the forest are balanced, i.e. [forest.(n)] is empty or [length forest.(n) >= min_length.(n)]. 3) [height forest.(n) <= n] *) (* Add the rope [r] (usually a leaf) to the appropriate slot of [forest] (according to [length r]) gathering ropes from lower levels if necessary. Assume [r] is not empty. *) let add_nonempty_to_forest forest r = let len = length r in let n = ref 0 in let sum = ref empty in (* forest.(n-1) ^ ... ^ (forest.(2) ^ (forest.(1) ^ forest.(0))) with [n] s.t. [min_length.(n) < len <= min_length.(n+1)]. [n] is at most [max_height-1] because [min_length.(max_height) = max_int] *) while len > min_length.(!n + 1) do if is_not_empty forest.(!n) then ( sum := balance_concat forest.(!n) !sum; forest.(!n) <- empty; ); if !n = level_flatten then sum := flatten !sum; incr n done; (* Height of [sum] at most 1 greater than what would be required for balance. *) sum := balance_concat !sum r; (* If [height r <= !n - 1] (e.g. if [r] is a leaf), then [!sum] is now balanced -- distinguish whether forest.(!n - 1) is empty or not (see the cited paper pp. 1319-1320). We now continue concatenating ropes until the result fits into an empty slot of the [forest]. *) let sum_len = ref(length !sum) in while !n < max_height && !sum_len >= min_length.(!n) do if is_not_empty forest.(!n) then ( sum := balance_concat forest.(!n) !sum; sum_len := length forest.(!n) + !sum_len; forest.(!n) <- empty; ); if !n = level_flatten then sum := flatten !sum; incr n done; decr n; forest.(!n) <- !sum let add_to_forest forest r = if is_not_empty r then add_nonempty_to_forest forest r (* Add a NON-EMPTY rope [r] to the forest *) let rec balance_insert forest rope = match rope with | Sub(s, i0, len) -> (* If the length of the leaf is small w.r.t. the length of [s], extract it to avoid keeping a ref the larger [s]. *) if 25 * len <= String.length s then add_nonempty_to_forest forest (Sub(String.sub s i0 len, 0, len)) else add_nonempty_to_forest forest rope | Concat(h, len, l,_, r) -> (* FIXME: when to rebalance subtrees *) if h >= max_height || len < min_length.(h) then ( (* sub-rope needs rebalancing *) balance_insert forest l; balance_insert forest r; ) else add_nonempty_to_forest forest rope ;; let concat_forest forest = let concat (n, sum) r = let sum = balance_concat r sum in (n+1, if n = level_flatten then flatten sum else sum) in snd(Array.fold_left concat (0,empty) forest) let balance = function | Sub(s, i0, len) as r -> if 0 < len && len <= extract_sub_length then Sub(String.sub s i0 len, 0, len) else r | r -> let forest = Array.make max_height empty in balance_insert forest r; concat_forest forest (* Only rebalance on the height. Also doing it when [length r < min_length.(height r)] ask for too many balancing and thus is slower. *) let balance_if_needed r = if height r >= rebalancing_height then balance r else r (** "Fast" concat for ropes. ********************************************************************** * Since concat is one of the few ways a rope can be constructed, it * must be fast. Also, this means it is this concat which is * responsible for the height of small ropes (until balance kicks in * but the later the better). *) exception Relocation_failure (* Internal exception *) (* Try to relocate the [leaf] at a position that will not increase the height. [length(relocate_topright rope leaf _)= length rope + length leaf] [height(relocate_topright rope leaf _) = height rope] *) let rec relocate_topright rope leaf len_leaf = match rope with | Sub(_,_,_) -> raise Relocation_failure | Concat(h, len, l,ll, r) -> let hr = height r + 1 in if hr < h then (* Success, we can insert the leaf here without increasing the height *) let lr = length r in Concat(h, len + len_leaf, l,ll, Concat(hr, lr + len_leaf, r, lr, leaf)) else (* Try at the next level *) Concat(h, len + len_leaf, l,ll, relocate_topright r leaf len_leaf) let rec relocate_topleft leaf len_leaf rope = match rope with | Sub(_,_,_) -> raise Relocation_failure | Concat(h, len, l,ll, r) -> let hl = height l + 1 in if hl < h then (* Success, we can insert the leaf here without increasing the height *) let len_left = len_leaf + ll in let left = Concat(hl, len_left, leaf, len_leaf, l) in Concat(h, len_leaf + len, left, len_left, r) else (* Try at the next level *) let left = relocate_topleft leaf len_leaf l in Concat(h, len_leaf + len, left, len_leaf + ll, r) (* We avoid copying too much -- as this may slow down access, even if height is lower. *) let concat2_nonempty rope1 rope2 = match rope1, rope2 with | Sub(s1,i1,len1), Sub(s2,i2,len2) -> let len = len1 + len2 in if len <= small_rope_length then let s = Bytes.create len in Bytes.blit_string s1 i1 s 0 len1; Bytes.blit_string s2 i2 s len1 len2; Sub(Bytes.unsafe_to_string s, 0, len) else Concat(1, len, rope1, len1, rope2) | Concat(h1, len1, l1,ll1, (Sub(s1, i1, lens1) as leaf1)), _ when h1 > height rope2 -> let len2 = length rope2 in let len = len1 + len2 and lens = lens1 + len2 in if lens <= small_rope_length then let s = Bytes.create lens in Bytes.blit_string s1 i1 s 0 lens1; copy_to_subbytes s lens1 rope2; Concat(h1, len, l1,ll1, Sub(Bytes.unsafe_to_string s, 0, lens)) else begin try let left = relocate_topright l1 leaf1 lens1 in (* [h1 = height l1 + 1] since the right branch is a leaf and [height l1 = height left]. *) Concat(max h1 (1 + height rope2), len, left, len1, rope2) with Relocation_failure -> let h2plus1 = height rope2 + 1 in (* if replacing [leaf1] will increase the height or if further concat will have an opportunity to add to a (small) leaf *) if (h1 = h2plus1 && len2 <= max_flatten_length) || len2 < small_rope_length then Concat(h1 + 1, len, rope1, len1, flatten rope2) else (* [h1 > h2 + 1] *) let right = Concat(h2plus1, lens, leaf1, lens1, rope2) in Concat(h1, len, l1, ll1, right) end | _, Concat(h2, len2, (Sub(s2, i2, lens2) as leaf2),_, r2) when height rope1 < h2 -> let len1 = length rope1 in let len = len1 + len2 and lens = len1 + lens2 in if lens <= small_rope_length then let s = Bytes.create lens in copy_to_subbytes s 0 rope1; Bytes.blit_string s2 i2 s len1 lens2; Concat(h2, len, Sub(Bytes.unsafe_to_string s, 0, lens), lens, r2) else begin try let right = relocate_topleft leaf2 lens2 r2 in (* [h2 = height r2 + 1] since the left branch is a leaf and [height r2 = height right]. *) Concat(max (1 + height rope1) h2, len, rope1, len1, right) with Relocation_failure -> let h1plus1 = height rope1 + 1 in (* if replacing [leaf2] will increase the height or if further concat will have an opportunity to add to a (small) leaf *) if (h1plus1 = h2 && len1 <= max_flatten_length) || len1 < small_rope_length then Concat(h2 + 1, len, flatten rope1, len1, rope2) else (* [h1 + 1 < h2] *) let left = Concat(h1plus1, lens, rope1, len1, leaf2) in Concat(h2, len, left, lens, r2) end | _, _ -> let len1 = length rope1 and len2 = length rope2 in let len = len1 + len2 in (* Small unbalanced ropes may happen if one concat left, then right, then left,... This costs a bit of time but is a good defense. *) if len <= small_rope_length then let s = Bytes.create len in copy_to_subbytes s 0 rope1; copy_to_subbytes s len1 rope2; Sub(Bytes.unsafe_to_string s, 0, len) else begin let rope1 = if len1 <= small_rope_length then flatten rope1 else rope1 and rope2 = if len2 <= small_rope_length then flatten rope2 else rope2 in let h = 1 + max (height rope1) (height rope2) in Concat(h, len1 + len2, rope1, len1, rope2) end ;; let concat2 rope1 rope2 = let len1 = length rope1 and len2 = length rope2 in let len = len1 + len2 in if len1 = 0 then rope2 else if len2 = 0 then rope1 else begin if len < len1 (* overflow *) then failwith "Rope.concat2: the length of the resulting rope exceeds max_int"; let h = 1 + max (height rope1) (height rope2) in if h >= rebalancing_height then (* We will need to rebalance anyway, so do a simple concat *) balance (Concat(h, len, rope1, len1, rope2)) else (* No automatic rebalancing -- experimentally lead to faster exec *) concat2_nonempty rope1 rope2 end ;; (** Subrope ***********************************************************************) (** [sub_to_substring flat j i len r] copies the subrope of [r] starting at character [i] and of length [len] to [flat.[j ..]]. *) let rec sub_to_substring flat j i len = function | Sub(s, i0, _) -> Bytes.blit_string s (i0 + i) flat j len | Concat(_, _, l, ll, r) -> let ri = i - ll in if ri >= 0 then (* only right branch *) sub_to_substring flat j ri len r else (* ri < 0 *) let lenr = ri + len in if lenr <= 0 then (* only left branch *) sub_to_substring flat j i len l else ( (* at least one char from the left and right branches *) sub_to_substring flat j i (-ri) l; sub_to_substring flat (j - ri) 0 lenr r; ) let flatten_subrope rope i len = assert(len <= Sys.max_string_length); let flat = Bytes.create len in sub_to_substring flat 0 i len rope; Sub(Bytes.unsafe_to_string flat, 0, len) ;; (* Are lazy sub-rope nodes really needed? *) (* This function assumes that [i], [len] define a valid sub-rope of the last arg. *) let rec sub_rec i len = function | Sub(s, i0, lens) -> assert(i >= 0 && i <= lens - len); Sub(s, i0 + i, len) | Concat(_, rope_len, l, ll, r) -> let rl = rope_len - ll in let ri = i - ll in if ri >= 0 then if len = rl then r (* => ri = 0 -- full right sub-rope *) else sub_rec ri len r else let rlen = ri + len (* = i + len - ll *) in if rlen <= 0 then (* right sub-rope empty *) if len = ll then l (* => i = 0 -- full left sub-rope *) else sub_rec i len l else (* at least one char from the left and right sub-ropes *) let l' = if i = 0 then l else sub_rec i (-ri) l and r' = if rlen = rl then r else sub_rec 0 rlen r in let h = 1 + max (height l') (height r') in (* FIXME: do we have to use this opportunity to flatten some subtrees? In any case, the height of tree we get is no worse than the initial tree (but the length may be much smaller). *) Concat(h, len, l', -ri, r') let sub rope i len = let len_rope = length rope in if i < 0 || len < 0 || i > len_rope - len then invalid_arg "Rope.sub" else if len = 0 then empty else if len <= max_flatten_length && len_rope >= 32768 then (* The benefit of flattening such subropes (and constants) has been seen experimentally. It is not clear what the "exact" rule should be. *) flatten_subrope rope i len else sub_rec i len rope (** String alike functions ***********************************************************************) let is_space = function | ' ' | '\012' | '\n' | '\r' | '\t' -> true | _ -> false let rec trim_left = function | Sub(s, i0, len) -> let i = ref i0 in let i_max = i0 + len in while !i < i_max && is_space (String.unsafe_get s !i) do incr i done; if !i = i_max then empty else Sub(s, !i, i_max - !i) | Concat(_, _, l, _, r) -> let l = trim_left l in if is_empty l then trim_left r else let ll = length l in Concat(1 + max (height l) (height r), ll + length r, l, ll, r) let rec trim_right = function | Sub(s, i0, len) -> let i = ref (i0 + len - 1) in while !i >= i0 && is_space (String.unsafe_get s !i) do decr i done; if !i < i0 then empty else Sub(s, i0, !i - i0 + 1) | Concat(_, _, l, ll, r) -> let r = trim_right r in if is_empty r then trim_right l else let lr = length r in Concat(1 + max (height l) (height r), ll + lr, l, ll, r) let trim r = trim_right(trim_left r) (* Escape the range s.[i0 .. i0+len-1]. Modeled after Bytes.escaped *) let escaped_sub s i0 len = let n = ref 0 in let i1 = i0 + len - 1 in for i = i0 to i1 do n := !n + (match String.unsafe_get s i with | '\"' | '\\' | '\n' | '\t' | '\r' | '\b' -> 2 | ' ' .. '~' -> 1 | _ -> 4) done; if !n = len then Sub(s, i0, len) else ( let s' = Bytes.create !n in n := 0; for i = i0 to i1 do (match String.unsafe_get s i with | ('\"' | '\\') as c -> Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n c | '\n' -> Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n 'n' | '\t' -> Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n 't' | '\r' -> Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n 'r' | '\b' -> Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n 'b' | (' ' .. '~') as c -> Bytes.unsafe_set s' !n c | c -> let a = Char.code c in Bytes.unsafe_set s' !n '\\'; incr n; Bytes.unsafe_set s' !n (Char.chr (48 + a / 100)); incr n; Bytes.unsafe_set s' !n (Char.chr (48 + (a / 10) mod 10)); incr n; Bytes.unsafe_set s' !n (Char.chr (48 + a mod 10)); ); incr n done; Sub(Bytes.unsafe_to_string s', 0, !n) ) let rec escaped = function | Sub(s, i0, len) -> escaped_sub s i0 len | Concat(h, _, l, _, r) -> let l = escaped l in let ll = length l in let r = escaped r in Concat(h, ll + length r, l, ll, r) (* Return the index of [c] in [s.[i .. i1-1]] plus the [offset] or [-1] if not found. *) let rec index_string offset s i i1 c = if i >= i1 then -1 else if s.[i] = c then offset + i else index_string offset s (i+1) i1 c;; (* Return the index of [c] from position [i] in the rope or a negative value if not found *) let rec unsafe_index offset i c = function | Sub(s, i0, len) -> index_string (offset - i0) s (i0 + i) (i0 + len) c | Concat(_, _, l,ll, r) -> if i >= ll then unsafe_index (offset + ll) (i - ll) c r else let li = unsafe_index offset i c l in if li >= 0 then li else unsafe_index (offset + ll) 0 c r let index_from r i c = if i < 0 || i >= length r then invalid_arg "Rope.index_from" else let j = unsafe_index 0 i c r in if j >= 0 then j else raise Not_found let index_from_opt r i c = if i < 0 || i >= length r then invalid_arg "Rope.index_from_opt"; let j = unsafe_index 0 i c r in if j >= 0 then Some j else None let index r c = let j = unsafe_index 0 0 c r in if j >= 0 then j else raise Not_found let index_opt r c = let j = unsafe_index 0 0 c r in if j >= 0 then Some j else None let contains_from r i c = if i < 0 || i >= length r then invalid_arg "Rope.contains_from" else unsafe_index 0 i c r >= 0 let contains r c = unsafe_index 0 0 c r >= 0 (* Return the index of [c] in [s.[i0 .. i]] (starting from the right) plus the [offset] or [-1] if not found. *) let rec rindex_string offset s i0 i c = if i < i0 then -1 else if s.[i] = c then offset + i else rindex_string offset s i0 (i - 1) c let rec unsafe_rindex offset i c = function | Sub(s, i0, _) -> rindex_string (offset - i0) s i0 (i0 + i) c | Concat(_, _, l,ll, r) -> if i < ll then unsafe_rindex offset i c l else let ri = unsafe_rindex (offset + ll) (i - ll) c r in if ri >= 0 then ri else unsafe_rindex offset (ll - 1) c l let rindex_from r i c = if i < 0 || i > length r then invalid_arg "Rope.rindex_from" else let j = unsafe_rindex 0 i c r in if j >= 0 then j else raise Not_found let rindex_from_opt r i c = if i < 0 || i > length r then invalid_arg "Rope.rindex_from_opt"; let j = unsafe_rindex 0 i c r in if j >= 0 then Some j else None let rindex r c = let j = unsafe_rindex 0 (length r - 1) c r in if j >= 0 then j else raise Not_found let rindex_opt r c = let j = unsafe_rindex 0 (length r - 1) c r in if j >= 0 then Some j else None let rcontains_from r i c = if i < 0 || i >= length r then invalid_arg "Rope.rcontains_from" else unsafe_rindex 0 i c r >= 0 let lowercase_ascii r = map ~f:Char.lowercase_ascii r let uppercase_ascii r = map ~f:Char.uppercase_ascii r let lowercase = lowercase_ascii let uppercase = uppercase_ascii let rec map1 f = function | Concat(h, len, l, ll, r) -> Concat(h, len, map1 f l, ll, r) | Sub(s, i0, len) -> if len = 0 then empty else begin let s' = Bytes.create len in Bytes.set s' 0 (f (String.unsafe_get s i0)); Bytes.blit_string s (i0 + 1) s' 1 (len - 1); Sub(Bytes.unsafe_to_string s', 0, len) end let capitalize_ascii r = map1 Char.uppercase_ascii r let uncapitalize_ascii r = map1 Char.lowercase_ascii r let capitalize = capitalize_ascii let uncapitalize = uncapitalize_ascii (** Iterator ***********************************************************************) module Iterator = struct type t = { rope: rope; len: int; (* = length rope; avoids to recompute it again and again for bound checks *) mutable i: int; (* current position in the rope; it is always a valid position of the rope or [-1]. *) mutable path: (rope * int) list; (* path to the current leaf with global range. First elements are closer to the leaf, last element is the full rope. *) mutable current: string; (* local cache of current leaf *) mutable current_g0: int; (* global index of the beginning of current string. i0 = current_g0 + offset *) mutable current_g1: int; (* global index of the char past the current string. len = current_g1 - current_g0 *) mutable current_offset: int; (* = i0 - current_g0 *) } (* [g0] is the global index (of [itr.rope]) of the beginning of the node we are examining. [i] is the _local_ index (of the current node) that we seek the leaf for *) let rec set_current_for_index_rec itr g0 i = function | Sub(s, i0, len) -> assert(0 <= i && i < len); itr.current <- s; itr.current_g0 <- g0; itr.current_g1 <- g0 + len; itr.current_offset <- i0 - g0 | Concat(_, _, l,ll, r) -> if i < ll then set_current_for_index_rec itr g0 i l else set_current_for_index_rec itr (g0 + ll) (i - ll) r let set_current_for_index itr = set_current_for_index_rec itr 0 itr.i itr.rope let rope itr = itr.rope let make r i0 = let len = length r in let itr = { rope = balance_if_needed r; len = len; i = i0; path = [(r, 0)]; (* the whole rope *) current = ""; current_offset = 0; current_g0 = 0; current_g1 = 0; (* empty range, important if [current] not set! *) } in if i0 >= 0 && i0 < len then set_current_for_index itr; (* force [current] to be set *) itr let peek itr i = if i < 0 || i >= itr.len then raise(Out_of_bounds "Rope.Iterator.peek") else ( if itr.current_g0 <= i && i < itr.current_g1 then itr.current.[i + itr.current_offset] else get itr.rope i (* rope get *) ) let get itr = let i = itr.i in if i < 0 || i >= itr.len then raise(Out_of_bounds "Rope.Iterator.get") else ( if i < itr.current_g0 || i >= itr.current_g1 then set_current_for_index itr; (* out of local bounds *) itr.current.[i + itr.current_offset] ) let pos itr = itr.i let incr itr = itr.i <- itr.i + 1 let decr itr = itr.i <- itr.i - 1 let goto itr j = itr.i <- j let move itr k = itr.i <- itr.i + k end (** (In)equality ***********************************************************************) exception Less exception Greater let compare r1 r2 = let len1 = length r1 and len2 = length r2 in let i1 = Iterator.make r1 0 and i2 = Iterator.make r2 0 in try for _i = 1 to min len1 len2 do (* on the common portion of [r1] and [r2] *) let c1 = Iterator.get i1 and c2 = Iterator.get i2 in if c1 < c2 then raise Less; if c1 > c2 then raise Greater; Iterator.incr i1; Iterator.incr i2; done; (* The strings are equal on their common portion, the shorter one is the smaller. *) compare (len1: int) len2 with | Less -> -1 | Greater -> 1 ;; (* Semantically equivalent to [compare r1 r2 = 0] but specialized implementation for speed. *) let equal r1 r2 = let len1 = length r1 and len2 = length r2 in if len1 <> len2 then false else ( let i1 = Iterator.make r1 0 and i2 = Iterator.make r2 0 in try for _i = 1 to len1 do (* len1 times *) if Iterator.get i1 <> Iterator.get i2 then raise Exit; Iterator.incr i1; Iterator.incr i2; done; true with Exit -> false ) (** KMP search algo ***********************************************************************) let init_next p = let m = String.length p in let next = Array.make m 0 in let i = ref 1 and j = ref 0 in while !i < m - 1 do if p.[!i] = p.[!j] then begin incr i; incr j; next.(!i) <- !j end else if !j = 0 then begin incr i; next.(!i) <- 0 end else j := next.(!j) done; next let search_forward_string p = if String.length p > Sys.max_array_length then failwith "Rope.search_forward: string to search too long"; let next = init_next p and m = String.length p in fun rope i0 -> let i = Iterator.make rope i0 and j = ref 0 in (try (* The iterator will raise an exception of we go beyond the length of the rope. *) while !j < m do if p.[!j] = Iterator.get i then begin Iterator.incr i; incr j end else if !j = 0 then Iterator.incr i else j := next.(!j) done; with Out_of_bounds _ -> ()); if !j >= m then Iterator.pos i - m else raise Not_found (** Buffer ***********************************************************************) module Buffer = struct (* The content of the buffer consists of the forest concatenated in decreasing order plus (at the end) the part stored in [buf]: [forest.(max_height-1) ^ ... ^ forest.(1) ^ forest.(0) ^ String.sub buf 0 pos] *) type t = { mutable buf: Bytes.t; buf_len: int; (* = String.length buf; must be > 0 *) mutable pos: int; mutable length: int; (* the length of the rope contained in this buffer -- including the part in the forest *) forest: rope array; (* keeping the partial rope in a forest will ensure it is balanced at the end. *) } (* We will not allocate big buffers, if we exceed the buffer length, we will cut into small chunks and add it directly to the forest. *) let create n = let n = if n < 1 then small_rope_length else if n > Sys.max_string_length then Sys.max_string_length else n in { buf = Bytes.create n; buf_len = n; pos = 0; length = 0; forest = Array.make max_height empty; } let clear b = b.pos <- 0; b.length <- 0; Array.fill b.forest 0 max_height empty (* [reset] is no different from [clear] because we do not grow the buffer. *) let reset b = clear b let add_char b c = if b.length = max_int then failwith "Rope.Buffer.add_char: \ buffer length will exceed the int range"; if b.pos >= b.buf_len then ( (* Buffer full, add it to the forest and allocate a new one: *) add_nonempty_to_forest b.forest (Sub(Bytes.unsafe_to_string b.buf, 0, b.buf_len)); b.buf <- Bytes.create b.buf_len; Bytes.set b.buf 0 c; b.pos <- 1; ) else ( Bytes.set b.buf b.pos c; b.pos <- b.pos + 1; ); b.length <- b.length + 1 let unsafe_add_substring b s ofs len = (* Beware of int overflow *) if b.length > max_int - len then failwith "Rope.Buffer.add_substring: \ buffer length will exceed the int range"; let buf_left = b.buf_len - b.pos in if len <= buf_left then ( (* Enough space in [buf] to hold the substring of [s]. *) String.blit s ofs b.buf b.pos len; b.pos <- b.pos + len; ) else ( (* Complete [buf] and add it to the forest: *) Bytes.blit_string s ofs b.buf b.pos buf_left; add_nonempty_to_forest b.forest (Sub(Bytes.unsafe_to_string b.buf, 0, b.buf_len)); b.buf <- Bytes.create b.buf_len; b.pos <- 0; (* Add the remaining of [s] to to forest (it is already balanced by of_substring, so we add is as such): *) let s = unsafe_of_substring s (ofs + buf_left) (len - buf_left) in add_nonempty_to_forest b.forest s ); b.length <- b.length + len let add_substring b s ofs len = if ofs < 0 || len < 0 || ofs > String.length s - len then invalid_arg "Rope.Buffer.add_substring"; unsafe_add_substring b s ofs len let add_string b s = unsafe_add_substring b s 0 (String.length s) let add_rope b (r: rope) = if is_not_empty r then ( let len = length r in if b.length > max_int - len then failwith "Rope.Buffer.add_rope: \ buffer length will exceed the int range"; (* First add the part hold by [buf]: *) add_to_forest b.forest (Sub(Bytes.sub_string b.buf 0 b.pos, 0, b.pos)); b.pos <- 0; (* I thought [balance_insert b.forest r] was going to rebalance [r] taking into account the content already in the buffer but it does not seem faster. We take the decision to possibly rebalance when the content is asked. *) add_nonempty_to_forest b.forest r; (* [r] not empty *) b.length <- b.length + len ) ;; let add_buffer b b2 = if b.length > max_int - b2.length then failwith "Rope.Buffer.add_buffer: \ buffer length will exceed the int range"; add_to_forest b.forest (Sub(Bytes.sub_string b.buf 0 b.pos, 0, b.pos)); b.pos <- 0; let forest = b.forest in let forest2 = b2.forest in for i = Array.length b2.forest - 1 to 0 do add_to_forest forest forest2.(i) done; b.length <- b.length + b2.length ;; let add_channel b ic len = if b.length > max_int - len then failwith "Rope.Buffer.add_channel: \ buffer length will exceed the int range"; let buf_left = b.buf_len - b.pos in if len <= buf_left then ( (* Enough space in [buf] to hold the input from the channel. *) really_input ic b.buf b.pos len; b.pos <- b.pos + len; ) else ( (* [len > buf_left]. Complete [buf] and add it to the forest: *) really_input ic b.buf b.pos buf_left; add_nonempty_to_forest b.forest (Sub(Bytes.unsafe_to_string b.buf, 0, b.buf_len)); (* Read the remaining from the channel *) let len = ref(len - buf_left) in while !len >= b.buf_len do let s = Bytes.create b.buf_len in really_input ic s 0 b.buf_len; add_nonempty_to_forest b.forest (Sub(Bytes.unsafe_to_string s, 0, b.buf_len)); len := !len - b.buf_len; done; (* [!len < b.buf_len] to read, put them into a new [buf]: *) let s = Bytes.create b.buf_len in really_input ic s 0 !len; b.buf <- s; b.pos <- !len; ); b.length <- b.length + len ;; (* Search for the nth element in [forest.(i ..)] of total length [len] *) let rec nth_forest forest k i len = assert(k <= Array.length forest); let r = forest.(k) in (* possibly empty *) let ofs = len - length r in (* offset of [r] in the full rope *) if i >= ofs then get r (i - ofs) else nth_forest forest (k + 1) i ofs let nth b i = if i < 0 || i >= b.length then raise(Out_of_bounds "Rope.Buffer.nth"); let forest_len = b.length - b.pos in if i >= forest_len then Bytes.get b.buf (i - forest_len) else nth_forest b.forest 0 i forest_len ;; (* Return a rope, [buf] must be duplicated as it becomes part of the rope, thus we duplicate it as ropes are immutable. What we do is very close to [add_nonempty_to_forest] followed by [concat_forest] except that we do not modify the forest and we select a sub-rope. Assume [len > 0] -- and [i0 >= 0]. *) let unsafe_sub (b: t) i0 len = let i1 = i0 + len in (* 1 char past subrope *) let forest_len = b.length - b.pos in let buf_i1 = i1 - forest_len in if buf_i1 >= len then (* The subrope is entirely in [buf] *) Sub(Bytes.sub_string b.buf (i0 - forest_len) len, 0, len) else begin let n = ref 0 in let sum = ref empty in if buf_i1 > 0 then ( (* At least one char in [buf] and at least one in the forest. Concat the ropes of inferior length and append the part of [buf] *) let rem_len = len - buf_i1 in while buf_i1 > min_length.(!n + 1) && length !sum < rem_len do sum := balance_concat b.forest.(!n) !sum; if !n = level_flatten then sum := flatten !sum; incr n done; sum := balance_concat !sum (Sub(Bytes.sub_string b.buf 0 buf_i1, 0, buf_i1)) ) else ( (* Subrope in the forest. Skip the forest elements until the last chunk of the sub-rope is found. Since [0 < len <= forest_len], there exists a nonempty rope in the forest. *) let j = ref buf_i1 in (* <= 0 *) while !j <= 0 do j := !j + length b.forest.(!n); incr n done; sum := sub b.forest.(!n - 1) 0 !j (* init. with proper subrope *) ); (* Add more forest elements until we get at least the desired length *) while length !sum < len do assert(!n < max_height); sum := balance_concat b.forest.(!n) !sum; (* FIXME: Check how this line may generate a 1Mb leaf: *) (* if !n = level_flatten then sum := flatten !sum; *) incr n done; let extra = length !sum - len in if extra = 0 then !sum else sub !sum extra len end let sub b i len = if i < 0 || len < 0 || i > b.length - len then invalid_arg "Rope.Buffer.sub"; if len = 0 then empty else (unsafe_sub b i len) let contents b = if b.length = 0 then empty else (unsafe_sub b 0 b.length) let length b = b.length end (* Using the Buffer module should be more efficient than sucessive concatenations and ensures that the final rope is balanced. *) let concat sep = function | [] -> empty | r0 :: tl -> let b = Buffer.create 1 in (* [buf] will not be used as we add ropes *) Buffer.add_rope b r0; List.iter (fun r -> Buffer.add_rope b sep; Buffer.add_rope b r) tl; Buffer.contents b (** Input/output -- modeled on Pervasive ***********************************************************************) (* Imported from pervasives.ml: *) external input_scan_line : in_channel -> int = "caml_ml_input_scan_line" let input_line ?(leaf_length=128) chan = let b = Buffer.create leaf_length in let rec scan () = let n = input_scan_line chan in if n = 0 then (* n = 0: we are at EOF *) if Buffer.length b = 0 then raise End_of_file else Buffer.contents b else if n > 0 then ( (* n > 0: newline found in buffer *) Buffer.add_channel b chan (n-1); ignore (input_char chan); (* skip the newline *) Buffer.contents b ) else ( (* n < 0: newline not found *) Buffer.add_channel b chan (-n); scan () ) in scan() ;; let read_line () = flush stdout; input_line stdin let rec output_string fh = function | Sub(s, i0, len) -> output fh (Bytes.unsafe_of_string s) i0 len | Concat(_, _, l,_, r) -> output_string fh l; output_string fh r ;; let output_rope = output_string let print_string rope = output_string stdout rope let print_endline rope = output_string stdout rope; print_newline() let prerr_string rope = output_string stderr rope let prerr_endline rope = output_string stderr rope; prerr_newline() (**/**) let rec number_leaves = function | Sub(_,_,_) -> 1 | Concat(_,_, l,_, r) -> number_leaves l + number_leaves r let rec number_concat = function | Sub(_,_,_) -> 0 | Concat(_,_, l,_, r) -> 1 + number_concat l + number_concat r let rec length_leaves = function | Sub(_,_, len) -> (len, len) | Concat(_,_, l,_, r) -> let (min1,max1) = length_leaves l and (min2,max2) = length_leaves r in (min min1 min2, max max1 max2) module IMap = Map.Make(struct type t = int let compare = Pervasives.compare end) let distrib_leaves = let rec add_leaves m = function | Sub(_,_,len) -> (try incr(IMap.find len !m) with _ -> m := IMap.add len (ref 1) !m) | Concat(_,_, l,_, r) -> add_leaves m l; add_leaves m r in fun r -> let m = ref(IMap.empty) in add_leaves m r; !m (**/**) (** Toplevel ***********************************************************************) module Rope_toploop = struct open Format let max_display_length = ref 400 (* When displaying, truncate strings that are longer than this. *) let ellipsis = ref "..." (* ellipsis for ropes longer than max_display_length. User changeable. *) (* Return [max_len - length r]. *) let rec printer_lim max_len (fm:formatter) r = if max_len > 0 then match r with | Concat(_,_, l,_, r) -> let to_be_printed = printer_lim max_len fm l in printer_lim to_be_printed fm r | Sub(s, i0, len) -> let l = if len < max_len then len else max_len in (match escaped_sub s i0 l with | Sub (s, i0, len) -> if i0 = 0 && len = String.length s then pp_print_string fm s else for i = i0 to i0 + len - 1 do pp_print_char fm (String.unsafe_get s i) done | Concat _ -> assert false); max_len - len else max_len let printer fm r = pp_print_string fm "\""; let to_be_printed = printer_lim !max_display_length fm r in pp_print_string fm "\""; if to_be_printed < 0 then pp_print_string fm !ellipsis end (** Regexp ***********************************************************************) module Regexp = struct (* FIXME: See also http://www.pps.jussieu.fr/~vouillon/ who is writing a DFA-based regular expression library. Would be nice to cooperate. *) end ;; (* Local Variables: *) (* compile-command: "make -k -C.." *) (* End: *)