Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
qcow_block_cache.ml1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310(* * Copyright (C) 2017 Docker Inc * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * *) let src = let src = Logs.Src.create "qcow" ~doc:"qcow2-formatted BLOCK device" in Logs.Src.set_level src (Some Logs.Info) ; src module Log = (val Logs.src_log src : Logs.LOG) let kib = 1024L let mib = Int64.mul kib 1024L open Qcow_types module Cstructs = Qcow_cstructs module RangeLocks = struct (** A set of exclusively locked intervals *) type t = {mutable locked: Int64.IntervalSet.t; c: unit Lwt_condition.t} let create () = let locked = Int64.IntervalSet.empty in let c = Lwt_condition.create () in {locked; c} let with_lock t i f = let open Lwt.Infix in let set = Int64.IntervalSet.(add i empty) in let rec get_lock () = if Int64.IntervalSet.(is_empty @@ inter t.locked set) then ( t.locked <- Int64.IntervalSet.(union t.locked set) ; Lwt.return_unit ) else Lwt_condition.wait t.c >>= fun () -> get_lock () in let put_lock () = t.locked <- Int64.IntervalSet.(diff t.locked set) ; Lwt.return_unit in get_lock () >>= fun () -> Lwt.finalize f put_lock end module Make (B : Qcow_s.RESIZABLE_BLOCK) = struct type error = B.error type write_error = B.write_error let pp_error = B.pp_error let pp_write_error = B.pp_write_error type t = { base: B.t ; mutable info: Mirage_block.info ; sector_size: int ; max_size_bytes: int64 ; mutable in_cache: Int64.IntervalSet.t ; mutable zeros: Int64.IntervalSet.t ; mutable cache: Cstruct.t Int64.Map.t ; locks: RangeLocks.t ; mutable disconnect_request: bool ; disconnect_m: Lwt_mutex.t ; write_back_m: Lwt_mutex.t ; zero: Cstruct.t } let get_info t = Lwt.return t.info let lazy_write_back t = let open Lwt.Infix in Lwt_mutex.with_lock t.write_back_m (fun () -> Log.debug (fun f -> f "lazy_write_back cached sectors = %Ld zeros = %Ld" (Int64.IntervalSet.cardinal t.in_cache) (Int64.IntervalSet.cardinal t.zeros) ) ; assert (Int64.IntervalSet.(is_empty @@ inter t.in_cache t.zeros)) ; (* coalesce known-zeros together with data blocks *) let all = Int64.IntervalSet.union t.in_cache t.zeros in Int64.diet_fold_s (fun i err -> match err with | Error e -> Lwt.return (Error e) | Ok () -> RangeLocks.with_lock t.locks i (fun () -> let x, y = Int64.IntervalSet.Interval.(x i, y i) in let mib = Int64.(div 1048576L (of_int t.sector_size)) in (* split the interval into 1MiB chunks *) let rec loop x y = if x > y then Lwt.return (Ok ()) else let y' = min (Int64.add x mib) y in let rec bufs acc sector last = if sector > last then List.rev acc else let buf = if Int64.Map.mem sector t.cache then ( let buf = Int64.Map.find sector t.cache in t.in_cache <- Int64.IntervalSet.remove i t.in_cache ; t.zeros <- Int64.IntervalSet.remove i t.zeros ; t.cache <- Int64.Map.remove sector t.cache ; buf ) else t.zero in bufs (buf :: acc) (Int64.succ sector) last in let bufs = bufs [] x y' in B.write t.base x bufs >>= function | Error e -> Lwt.return (Error e) | Ok () -> loop (Int64.succ y') y in loop x y ) ) all (Ok ()) ) let flush t = let open Lwt.Infix in lazy_write_back t >>= function | Error e -> Lwt.return (Error e) | Ok () -> B.flush t.base let connect ?(max_size_bytes = Int64.mul 100L mib) base = let open Lwt.Infix in B.get_info base >>= fun info -> let sector_size = info.Mirage_block.sector_size in let in_cache = Int64.IntervalSet.empty in let zeros = Int64.IntervalSet.empty in let cache = Int64.Map.empty in let locks = RangeLocks.create () in let disconnect_request = false in let disconnect_m = Lwt_mutex.create () in let write_back_m = Lwt_mutex.create () in let zero = Cstruct.create sector_size in Cstruct.memset zero 0 ; let t = { base ; info ; sector_size ; max_size_bytes ; in_cache ; cache ; zeros ; locks ; disconnect_request ; disconnect_m ; write_back_m ; zero } in Lwt.return t let disconnect t = let open Lwt.Infix in Lwt_mutex.with_lock t.disconnect_m (fun () -> t.disconnect_request <- true ; Lwt.return_unit ) >>= fun () -> (* There can be no more in-progress writes *) flush t >>= fun _ -> B.disconnect t.base (* Call [f sector buf] for every sector from [start] up to the length of [bufs] *) let rec per_sector sector_size start bufs f = match bufs with | [] -> Lwt.return (Ok ()) | b :: bs -> ( let open Lwt.Infix in let rec loop sector remaining = if Cstruct.length remaining = 0 then Lwt.return (Ok sector) else ( assert (Cstruct.length remaining >= sector_size) ; let first = Cstruct.sub remaining 0 sector_size in f sector first >>= function | Error e -> Lwt.return (Error e) | Ok () -> loop (Int64.succ sector) (Cstruct.shift remaining sector_size) ) in loop start b >>= function | Error e -> Lwt.return (Error e) | Ok start' -> per_sector sector_size start' bs f ) let read t start bufs = let len = Int64.of_int @@ Cstructs.len bufs in let i = Int64.IntervalSet.Interval.make start Int64.(pred @@ add start (div len (of_int t.sector_size))) in let set = Int64.IntervalSet.(add i empty) in if t.disconnect_request then Lwt.return (Error `Disconnected) else RangeLocks.with_lock t.locks i (fun () -> if Int64.IntervalSet.(is_empty @@ inter t.in_cache set) then B.read t.base start bufs (* consider adding it to cache *) else per_sector t.sector_size start bufs (fun sector buf -> if Int64.Map.mem sector t.cache then ( let from_cache = Int64.Map.find sector t.cache in Cstruct.blit from_cache 0 buf 0 t.sector_size ; Lwt.return (Ok ()) ) else B.read t.base sector [buf] ) ) let write t start bufs = let open Lwt.Infix in let len = Int64.of_int @@ Cstructs.len bufs in let current_size_bytes = Int64.(mul (IntervalSet.cardinal t.in_cache) (of_int t.sector_size)) in ( if Int64.(add current_size_bytes len) > t.max_size_bytes then lazy_write_back t else Lwt.return (Ok ()) ) >>= function | Error e -> Lwt.return (Error e) | Ok () -> let i = Int64.IntervalSet.Interval.make start Int64.(pred @@ add start (div len (of_int t.sector_size))) in (* Prevent new writes entering the cache after the disconnect has started *) Lwt_mutex.with_lock t.disconnect_m (fun () -> if t.disconnect_request then Lwt.return (Error `Disconnected) else RangeLocks.with_lock t.locks i (fun () -> per_sector t.sector_size start bufs (fun sector buf -> assert (Cstruct.length buf = t.sector_size) ; if not (Int64.Map.mem sector t.cache) then ( t.in_cache <- Int64.IntervalSet.(add i t.in_cache) ; t.zeros <- Int64.IntervalSet.(remove i t.zeros) ) ; t.cache <- Int64.Map.add sector buf t.cache ; Lwt.return (Ok ()) ) ) ) let resize t new_size = let open Lwt.Infix in B.resize t.base new_size >>= function | Error e -> Lwt.return (Error e) | Ok () -> (* If the file has become smaller, drop cached blocks beyond the new file size *) if new_size < t.info.Mirage_block.size_sectors then ( let still_ok, to_drop = Int64.Map.partition (fun sector _ -> sector < new_size) t.cache in let to_drop' = Int64.Map.fold (fun sector _ set -> let i = Int64.IntervalSet.Interval.make sector sector in Int64.IntervalSet.(add i set) ) to_drop Int64.IntervalSet.empty in t.cache <- still_ok ; t.in_cache <- Int64.IntervalSet.diff t.in_cache to_drop' ) ; (* If the file has become bigger, we know the new blocks contain zeroes *) ( if new_size > t.info.Mirage_block.size_sectors then let i = Int64.IntervalSet.Interval.make t.info.Mirage_block.size_sectors (Int64.pred new_size) in t.zeros <- Int64.IntervalSet.add i t.zeros ) ; t.info <- {t.info with Mirage_block.size_sectors= new_size} ; Lwt.return (Ok ()) end