package ppx_minidebug

  1. Overview
  2. Docs

ppx_minidebug

ppx_minidebug: Debug logs for selected functions and let-bindings

ppx_minidebug traces selected code if it has type annotations. ppx_minidebug offers three ways of instrumenting the code: %debug_pp and %debug_show (also %track_pp and %track_show), based on deriving.show, and %debug_sexp (also %track_sexp) based on sexplib0 and ppx_sexp_conv. The syntax extension expects a module Debug_runtime in the scope. The ppx_minidebug.runtime library (part of the ppx_minidebug package) offers three ways of logging the traces, as functors (or helper functions) generating Debug_runtime modules given an output channel (e.g. for a file). See the generated documentation for Minidebug_runtime.

Take a look at ppx_debug which has complementary strengths!

Try opam install ppx_minidebug to install from the opam repository. To install ppx_minidebug from sources, download it with e.g. gh repo clone lukstafi/ppx_minidebug; cd ppx_minidebug and then either dune install or opam install ..

To use ppx_minidebug in a Dune project, add/modify these stanzas: (preprocess (pps ... ppx_minidebug)), and (libraries ... ppx_minidebug.runtime).

Pp_format-based traces -- bare-bones

This backend relies on the Format module from the standard library. Define a Debug_runtime using the Pp_format functor. The helper functor Debug_ch opens a file for appending. E.g. either module Debug_runtime = Minidebug_runtime.Pp_format(struct let debug_ch = stdout let time_tagged = true end), or:

module Debug_runtime =
  Minidebug_runtime.Pp_format((val Minidebug_runtime.debug_ch "path/to/debugger_format.log"))

The logged traces will be indented using OCaml's Format module. Truncated example (using %debug_pp):

BEGIN DEBUG SESSION
"test/test_debug_pp.ml":7:17-9:14: bar
x = { Test_debug_pp.first = 7; second = 42 }  "test/test_debug_pp.ml":8:6: y y = 8  bar = 336  
"test/test_debug_pp.ml":13:17-15:20: baz
x = { Test_debug_pp.first = 7; second = 42 }  "test/test_debug_pp.ml":14:36: _yz
  _yz = { Test_debug_pp.first = 8; second = 3 }  baz = 339  
"test/test_debug_pp.ml":19:22-25:9: loop
depth = 0  x = { Test_debug_pp.first = 7; second = 42 }  "test/test_debug_pp.ml":23:8: y
  "test/test_debug_pp.ml":19:22-25:9: loop
    depth = 1  x = { Test_debug_pp.first = 41; second = 9 }  "test/test_debug_pp.ml":23:8: y
      "test/test_debug_pp.ml":19:22-25:9: loop
        depth = 2  x = { Test_debug_pp.first = 8; second = 43 }  "test/test_debug_pp.ml":23:8: y
          "test/test_debug_pp.ml":19:22-25:9: loop
            depth = 3  x = { Test_debug_pp.first = 42; second = 10 } 

PrintBox-based traces -- full feature set

This runtime relies on the printbox library; it has the most features. Here we define a Debug_runtime either using the entrypoint module Debug_runtime = (val Minidebug_runtime.debug ()), or using the PrintBox functor, e.g.:

module Debug_runtime =
  Minidebug_runtime.PrintBox((val Minidebug_runtime.debug_ch "path/to/debugger_printbox.log" end))

The logged traces will be pretty-printed as trees using the printbox package. Truncated example (using %debug_sexp):

BEGIN DEBUG SESSION
"test/test_debug_sexp.ml":7:19-9:17: foo
├─x = 7
├─"test/test_debug_sexp.ml":8:6: y
│ └─y = 8
└─foo = (7 8 16)
"test/test_debug_sexp.ml":15:19-17:14: bar
├─x = ((first 7) (second 42))
├─"test/test_debug_sexp.ml":16:6: y
│ └─y = 8
└─bar = 336
"test/test_debug_sexp.ml":21:19-24:28: baz
├─x = ((first 7) (second 42))
├─"test/test_debug_sexp.ml":22:17: _yz
│ └─_yz = (8 3)
├─"test/test_debug_sexp.ml":23:17: _uw
│ └─_uw = (7 13)
└─baz = 359
"test/test_debug_sexp.ml":28:19-30:17: lab
├─x = 7
├─"test/test_debug_sexp.ml":29:6: y
│ └─y = 8
└─lab = (7 8 16)
"test/test_debug_sexp.ml":34:24-40:9: loop
├─depth = 0
├─x = ((first 7) (second 42))
├─"test/test_debug_sexp.ml":38:8: y
│ ├─"test/test_debug_sexp.ml":34:24-40:9: loop
│ │ ├─depth = 1
│ │ ├─x = ((first 41) (second 9))
│ │ ├─"test/test_debug_sexp.ml":38:8: y
│ │ │ ├─"test/test_debug_sexp.ml":34:24-40:9: loop
│ │ │ │ ├─depth = 2
│ │ │ │ ├─x = ((first 8) (second 43))
│ │ │ │ ├─"test/test_debug_sexp.ml":34:24-40:9: loop
│ │ │ │ │ ├─depth = 3
│ │ │ │ │ ├─x = ((first 44) (second 4))
│ │ │ │ │ ├─"test/test_debug_sexp.ml":34:24-40:9: loop
│ │ │ │ │ │ ├─depth = 4
│ │ │ │ │ │ ├─x = ((first 5) (second 22))
│ │ │ │ │ │ ├─"test/test_debug_sexp.ml":34:24-40:9: loop
│ │ │ │ │ │ │ ├─depth = 5
│ │ │ │ │ │ │ ├─x = ((first 23) (second 2))
│ │ │ │ │ │ │ └─loop = 25

Traces in HTML or Markdown as collapsible trees

The PrintBox runtime can be configured to output logs using HTML or Markdown. The logs then become collapsible trees, so that you can expose only the relevant information when debugging. Example configuration:

module Debug_runtime =
  Minidebug_runtime.PrintBox ((val Minidebug_runtime.debug_ch "debug.html"))
let () = Debug_runtime.(html_config := `Html default_html_config)
let () = Debug_runtime.boxify_sexp_from_size := 50

Here we also convert the logged sexp values (with at least 50 atoms) to trees. Example result: PrintBox runtime with collapsible/foldable trees

Highlighting search terms

The PrintBox runtime also supports highlighting paths to logs that match a highlight_terms regular expression. For example: PrintBox runtime with collapsible/foldable trees

To limit the highlight noise, some log entries can be excluded from propagating the highlight status using the exclude_on_path setting. To trim excessive logging while still providing some context, you can set prune_upto to a level greater than 0, which only outputs highlighted boxes below that level.

PrintBox creating helpers with defaults: debug and debug_file

The configuration for the above example is more concisely just:

module Debug_runtime = (val Minidebug_runtime.debug_file ~highlight_terms:(Re.str "169") "debug")

Similarly, debug returns a PrintBox module, which by default logs to stdout:

module Debug_runtime = (val Minidebug_runtime.debug ())

The HTML output supports emitting file locations as hyperlinks. For example:

module Debug_runtime = (val Minidebug_runtime.debug_file ~hyperlink:"" "debug")

where ~hyperlink is the prefix to let you tune the file path and select a browsing option. For illustration, the prefixes for Markdown / HTML outputs I might use at the time of writing:

  • ~hyperlink:"./" or ~hyperlink:"../" depending on the relative locations of the log file and the binary
  • ~hyperlink:"vscode://file//wsl.localhost/ubuntu23/home/lukstafi/ppx_minidebug/"

    • if left-clicking a link from within VS Code Live Preview follows the file in the HTML preview window rather than an editor window, middle-click the link
  • ~hyperlink:"https://github.com/lukstafi/ppx_minidebug/tree/main/"

Recommended: values_first_mode

This setting puts the result of the computation as the header of a computation subtree, rather than the source code location of the computation. I recommend using this setting as it reduces noise and makes the important information easier to find and visible with less unfolding. Another important benefit is that it makes hyperlinks usable, by pushing them from the summary line to under the fold. I decided to not make it the default setting, because it is not available in the bare-bones runtimes, and can be confusing.

For example:

module Debug_runtime =
  (val Minidebug_runtime.debug ~highlight_terms:(Re.str "3") ~values_first_mode:true ())
let%debug_this_show rec loop_highlight (x : int) : int =
  let z : int = (x - 1) / 2 in
  if x <= 0 then 0 else z + loop_highlight (z + (x / 2))
let () = print_endline @@ Int.to_string @@ loop_highlight 7

Truncated results:

BEGIN DEBUG SESSION
┌──────────────────┐
│loop_highlight = 9│
├──────────────────┘
├─"test/test_expect_test.ml":1042:41-1044:58
├─x = 7
├─┬─────┐
│ │z = 3│
│ ├─────┘
│ └─"test/test_expect_test.ml":1043:8
└─┬──────────────────┐
  │loop_highlight = 6│
  ├──────────────────┘
  ├─"test/test_expect_test.ml":1042:41-1044:58
  ├─x = 6
  ├─z = 2
  │ └─"test/test_expect_test.ml":1043:8
  └─┬──────────────────┐
    │loop_highlight = 4│
    ├──────────────────┘
    ├─"test/test_expect_test.ml":1042:41-1044:58

Example showcasing the printbox-html backend: PrintBox HTML backend -- follow hyperlink

Example showcasing the printbox-md (Markdown) backend: PrintBox Markdown backend -- follow hyperlink

Usage

Tracing only happens in explicitly marked lexical scopes. The extension points vary along three axes:

  • %debug_ vs. %track_

    • The prefix %debug_ means logging fewer things: only let-bound values and functions are logged, and functions only when their return type is annotated.
    • %track_ also logs: which if and match branch is taken, and all functions, including anonymous ones.
  • Optional infix _this_ puts only the body of a let definition in scope for logging.

    • let%debug_this v: t = compute value in outer scope will trace v and the type-annotated bindings and functions inside compute value, but it will not trace outer scope.
  • Representation and printing mechanism: _pp, _show, recommended: _sexp

    • _pp is currently most restrictive as it requires the type of a value to be an identifier. The identifier is converted to a pp_ printing function, e.g. pp_int.
    • _show converts values to strings via the %show extension provided by deriving.show: e.g. [%show: int list].
    • _sexp converts values to sexp expressions first using %sexp_of, e.g. [%sexp_of: int list]. The runtime can decide how to print the sexp expressions. The PrintBox backend allows to convert the sexps to box structures first, with the boxify_sexp_from_size setting. This means large values can be unfolded gradually for inspection.

See examples in the test directory, and especially the inline tests.

Only type-annotated let-bindings, function arguments, function results can be logged. However, the bindings and function arguments can be nested patterns! Variant patterns are not yet supported

To properly trace in concurrent settings, ensure that different threads use different log channels. For example, you can bind Debug_runtime locally: let module Debug_runtime = Minidebug_runtime.debug_file thread_name in ...

The PrintBox logs are the prettiest, I could not get the Pp_format-functor-based output look the way I wanted. The Flushing logs enable VS Code Log Inspector flame graphs. One should be able to get other logging styles to work with Log Inspector by configuring its regexp patterns.

ppx_minidebug can be installed using opam. ppx_minidebug.runtime depends on printbox, ptime, sexplib0.

Breaking infinite recursion with max_nesting_depth and looping with max_num_children; Flushing-based traces

The PrintBox and Pp_format backends only produce any output when a top-level log entry gets closed. This makes it harder to debug infinite loops and especially infinite recursion. The setting max_nesting_depth terminates a computation when the given log nesting is exceeded. For example:

module Debug_runtime = (val Minidebug_runtime.debug ())

let%debug_show rec loop_exceeded (x : int) : int =
  [%debug_interrupts
    { max_nesting_depth = 5; max_num_children = 1000 };
    let z : int = (x - 1) / 2 in
    if x <= 0 then 0 else z + loop_exceeded (z + (x / 2))]

let () =
  try print_endline @@ Int.to_string @@ loop_exceeded 17
  with _ -> print_endline "Raised exception."

Similarly, max_num_children raises a failure when the given number of logs with the same parent is exceeded. For example:

module Debug_runtime = (val Minidebug_runtime.debug ())

let%debug_show _bar : unit =
  [%debug_interrupts
    { max_nesting_depth = 1000; max_num_children = 10 };
    for i = 0 to 100 do
      let _baz : int = i * 2 in
      ()
    done]

The %debug_interrupts extension point emits the interrupt checks in a lexically delimited scope. For convenience, we offer the extension point %global_debug_interrupts which triggers emitting the interrupt checks in the remainder of the source preprocessed in the same process (its scope is therefore less well defined). For example:

module Debug_runtime = (val Minidebug_runtime.debug ())

[%%global_debug_interrupts { max_nesting_depth = 5; max_num_children = 10 }]

let%debug_show rec loop_exceeded (x : int) : int =
  let z : int = (x - 1) / 2 in
  if x <= 0 then 0 else z + loop_exceeded (z + (x / 2))

let () =
  try print_endline @@ Int.to_string @@ loop_exceeded 17
  with _ -> print_endline "Raised exception."

let%track_show bar () : unit =
  for i = 0 to 100 do
    let _baz : int = i * 2 in
    ()
  done

let () = try bar () with _ -> print_endline "Raised exception."

If that is insufficient, you can define a Debug_runtime using the Flushing functor. E.g. either module Debug_runtime = (val Minidebug_runtime.debug_flushing ()), or:

module Debug_runtime =
  Minidebug_runtime.Flushing((val Minidebug_runtime.debug_ch "path/to/debugger_flushing.log"))

The logged traces are still indented, but if the values to print are multi-line, their formatting might be messy. The benefit of Flushing traces is that the output is flushed line-at-a-time, so no output should be lost if the traced program crashes. But in recent versions of ppx_minidebug, uncaught exceptions no longer break logging in the PrintBox and Pp_format runtimes. The indentation is also smaller (half of PrintBox). Truncated example (using %debug_show):

BEGIN DEBUG SESSION at time 2023-03-02 23:19:40.763950 +01:00
2023-03-02 23:19:40.763980 +01:00 - foo begin "test/test_debug_show.ml":3:19-5:15
 x = 7
 foo = [7; 8; 16]
2023-03-02 23:19:40.764000 +01:00 - foo end
2023-03-02 23:19:40.764011 +01:00 - bar begin "test/test_debug_show.ml":10:19-10:73
 x = { Test_debug_show.first = 7; second = 42 }
 bar = 336
2023-03-02 23:19:40.764028 +01:00 - bar end
2023-03-02 23:19:40.764034 +01:00 - baz begin "test/test_debug_show.ml":13:19-14:67
 x = { Test_debug_show.first = 7; second = 42 }
 baz = 339
2023-03-02 23:19:40.764048 +01:00 - baz end
2023-03-02 23:19:40.764054 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
 depth = 0
 x = { Test_debug_show.first = 7; second = 42 }
  "test/test_debug_show.ml":21:8: 
  2023-03-02 23:19:40.764073 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
   depth = 1
   x = { Test_debug_show.first = 41; second = 9 }
    "test/test_debug_show.ml":21:8: 
    2023-03-02 23:19:40.764094 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
     depth = 2
     x = { Test_debug_show.first = 8; second = 43 }
      "test/test_debug_show.ml":21:8: 
      2023-03-02 23:19:40.764109 +01:00 - loop begin "test/test_debug_show.ml":17:24-23:9
       depth = 3
       x = { Test_debug_show.first = 42; second = 10 }
        "test/test_debug_show.ml":21:8: 

Tracking: control flow branches, anonymous and insufficiently annotated functions

Using the %track_-prefix rather than %debug_-prefix to start a debug scope, or using the %debug_trace extension point inside a debug scope, enables more elaborate tracking of the execution path. It logs which if, match, function branch is taken. It logs the nesting and loop index of for loops, and the nesting of while loops. It logs functions even if the return type is not annotated, including anonymous functions; in particular, it logs type-annotated arguments of anonymous functions. To selectively disable these logs, use %debug_notrace. Note that it disables the logs on a lexical scope, not just on the annotated syntax node (e.g. a specific if or match expression).

If you get fewer logs than you expected, try converting %debug_ to %track_.

For example:

let%track_show track_branches (x : int) : int =
  if x < 6 then
    match%debug_notrace x with
    | 0 -> 1
    | 1 -> 0
    | _ ->
        let result : int = if x > 2 then x else ~-x in
        result
  else
    match x with
    | 6 -> 5
    | 7 -> 4
    | _ ->
        let result : int = if x < 10 then x else ~-x in
        result

let () =
  print_endline @@ Int.to_string @@ track_branches 8;
  print_endline @@ Int.to_string @@ track_branches 3

gives:

BEGIN DEBUG SESSION
"test/test_expect_test.ml":415:37-429:16: track_branches
├─x = 8
├─"test/test_expect_test.ml":424:6: <if -- else branch>
│ └─"test/test_expect_test.ml":427:8: <match -- branch 2>
│   └─"test/test_expect_test.ml":428:14: result
│     ├─"test/test_expect_test.ml":428:44: <if -- then branch>
│     └─result = 8
└─track_branches = 8
8
"test/test_expect_test.ml":415:37-429:16: track_branches
├─x = 3
├─"test/test_expect_test.ml":417:6: <if -- then branch>
│ └─"test/test_expect_test.ml":421:14: result
│   └─result = 3
└─track_branches = 3
3

and

let%track_this_show anonymous (x : int) =
  Array.fold_left ( + ) 0 @@ Array.init (x + 1) (fun (i : int) -> i)
in
print_endline @@ Int.to_string @@ anonymous 3

gives:

BEGIN DEBUG SESSION
"test/test_expect_test.ml":516:32-517:70: anonymous
├─x = 3
├─"test/test_expect_test.ml":517:50-517:70: __fun
│ └─i = 0
├─"test/test_expect_test.ml":517:50-517:70: __fun
│ └─i = 1
├─"test/test_expect_test.ml":517:50-517:70: __fun
│ └─i = 2
└─"test/test_expect_test.ml":517:50-517:70: __fun
  └─i = 3
6

Reducing the size of generated logs

Summary of possibilities:

  • no_debug_if
  • prune_upto
  • truncate_children
  • split_files_after
  • HTML browsers can handle really large files (less luck with Markdown).

In the PrintBox backend, you can disable the logging of specified subtrees, when the output is irrelevant, would be a distraction, or the logs take up too much space. The test suite example:

let%debug_this_show rec fixpoint_changes (x: int): int =
  let z: int = (x - 1) / 2 in
  (* The call [x = 2] is not printed because it is a descendant of
     the no-debug call [x = 4]. *)
  Debug_runtime.no_debug_if (x <> 6 && x <> 2 && (z + 1) * 2 = x);
  if x <= 0 then 0 else z + fixpoint_changes (z + x / 2) in
print_endline @@ Int.to_string @@ fixpoint_changes 7

leads to:

"test/test_expect_test.ml":96:43-100:58: fixpoint_changes
├─x = 7
├─"test/test_expect_test.ml":97:8: z
│ └─z = 3
├─"test/test_expect_test.ml":96:43-100:58: fixpoint_changes
│ ├─x = 6
│ ├─"test/test_expect_test.ml":97:8: z
│ │ └─z = 2
│ ├─"test/test_expect_test.ml":96:43-100:58: fixpoint_changes
│ │ ├─x = 5
│ │ ├─"test/test_expect_test.ml":97:8: z
│ │ │ └─z = 2
│ │ └─fixpoint_changes = 4
│ └─fixpoint_changes = 6
└─fixpoint_changes = 9
9

The no_debug_if mechanism requires modifying the logged sources, and since it's limited to cutting out subtrees of the logs, it can be tricky to select and preserve the context one wants. The highlighting mechanism with the prune_upto setting avoids these problems. You provide a search term without modifying the debugged sources. You can tune the pruning level to keep the context around the place the search term was found.

Setting the option truncate_children will only log the given number of children at each node, prioritizing the most recent ones. An example from the test suite:

let module Debug_runtime = (val Minidebug_runtime.debug ~truncate_children:10 ()) in
let () =
  let%track_this_show _bar : unit =
    for i = 0 to 30 do
      let _baz : int = i * 2 in
      ()
    done
  in
  ()
in
[%expect
  {|
  BEGIN DEBUG SESSION
  "test/test_expect_test.ml":350:26: _bar
  ├─"test/test_expect_test.ml":351:8: <for loop>
  │ ├─<earlier entries truncated>
  │ ├─i = 26
  │ ├─"test/test_expect_test.ml":351:12: <for i>
  │ │ └─"test/test_expect_test.ml":352:14: _baz
  │ │   └─_baz = 52
  │ ├─i = 27
  │ ├─"test/test_expect_test.ml":351:12: <for i>
  │ │ └─"test/test_expect_test.ml":352:14: _baz
  │ │   └─_baz = 54
  │ ├─i = 28
  │ ├─"test/test_expect_test.ml":351:12: <for i>
  │ │ └─"test/test_expect_test.ml":352:14: _baz
  │ │   └─_baz = 56
  │ ├─i = 29
  │ ├─"test/test_expect_test.ml":351:12: <for i>
  │ │ └─"test/test_expect_test.ml":352:14: _baz
  │ │   └─_baz = 58
  │ ├─i = 30
  │ └─"test/test_expect_test.ml":351:12: <for i>
  │   └─"test/test_expect_test.ml":352:14: _baz
  │     └─_baz = 60
  └─_bar = () |}]

If you provide the split_files_after setting, the logging will transition to a new file after the current file exceeds the given number of characters. However, the splits only happen at the "toplevel", to not interrupt laying out the log trees. If required, you can remove logging indicators from your high-level functions, to bring the deeper logic log trees to the toplevel. This matters when you prefer Markdown output over HTML output -- in my experience, Markdown renderers (VS Code Markdown Preview, GitHub Preview) fail for files larger than 2MB, while browsers easily handle HTML files of over 200MB (including via VS Code Live Preview).

Providing the necessary type information

We only log values of identifiers, located inside patterns, for which the type is provided in the source code, in a syntactically close / related location. PPX rewriters do not have access to the results of type inference. We extract the available type information, but we don't do it perfectly. We propagate type information top-down, merging it, but we do not unify or substitute type variables.

Here is a probably incomplete list of the restrictions:

  • When types for a (sub) pattern are specified in multiple places, they are combined by matching syntactically, the type variable alternatives are discarded. The type that is closer to the (sub) pattern is preferred, even if selecting a corresponding type in another place would be better.
  • When faced with a binding of a form: let pattern = (expression : type_), we make use of type_, but we ignore all types nested inside expression, even if we decompose pattern.

    • For example, let%track_sexp (x, y) = ((5, 3) : int * int) works -- logs both x and y. Also work: let%track_sexp ((x, y) : int * int) = (5, 3) and let%track_sexp ((x : int), (y : int)) = (5, 3). But let%track_sexp (x, y) = ((5 : int), (3 : int)) will not log anything!
  • We ignore record and variant datatypes when processing record and variant constructor cases. That's because there is no generic(*) way to extract the types of the arguments.

    • (*) Although polymorphic variant types can be provided inline, we decided it's not worth the effort supporting them.
    • We do handle tuple types and the builtin array type (they are not records or variants).

      • For example, this works: let%track_sexp { first : int; second : int } = { first = 3; second =7 } -- but compare with the tuple examples above, the alternatives provided above would not work for records.
    • Hard-coded special cases: we do decompose the option type and the list type. For example: let%track_show f : int option -> unit = function None -> () | Some _x -> () in f (Some 3) will log the value of _x.
  • Another example of only propagating types top-down:

    • let%track_show f (l : int option) : int = match l with Some y -> ... will not log y when f is applied (but it will log l).
    • Both let%track_show f : int option -> int = function Some y -> ... and let%track_show f l : int = match (l : int option) with Some y -> ... will log y.

As a help in debugging whether the right type information got propagated, we offer the extension %debug_type_info (and %global_debug_type_info). (The display strips module qualifiers from types.) It is not a top-level extension. Example from the test suite:

let module Debug_runtime = (val Minidebug_runtime.debug ~values_first_mode:true ()) in
[%debug_show
  [%debug_type_info
    let f : 'a. 'a -> int -> int = fun _a b -> b + 1 in
    let g : 'a. 'a -> int -> 'a -> 'a -> int = fun _a b _c _d -> b * 2 in
    let () = print_endline @@ Int.to_string @@ f 'a' 6 in
    print_endline @@ Int.to_string @@ g 'a' 6 'b' 'c']];
[%expect
  {|
    BEGIN DEBUG SESSION
    f : int = 7
    ├─"test/test_expect_test.ml":1446:37-1446:54
    └─b : int = 6
    7
    g : int = 12
    ├─"test/test_expect_test.ml":1447:49-1447:72
    └─b : int = 6
    12 |}]

You can also use at the module level: [%%global_debug_type_info true], prior to the code of interest.

VS Code suggestions

Add / remove type annotations and visit files using VOCaml

VOCaml helpers for coding in OCaml provide commands to add and remove annotations on selected bindings. They can be used to introduce logging, tune it, and cleanup afterward. It also has a command to populate the Quick Open dialog with a file name and location from a line under cursor. It can be used to jump to the source code from a log file.

Note that you can add and remove type annotations using VSCode OCaml Platform's code actions, and the Find and Transform suggestion below is a more flexible go-to-file solution -- so VOCaml is somewhat redundant. But, it is still valuable: (1) it annotates multiple let-bindings at once in a selection, and (2) it annotates the argument types and the return type of a function (as required by ppx_debug) when invoked on a function definition.

Visualize the flame graph using Log Inspector

Log Inspector (sub-millisecond)'s main feature is visualizing timestamped logs as flame graphs. To invoke it in VS Code, go to a Minidebug_runtime.Flushing-style logs file, press crtl+shift+P, and execute the command "Log Inspector: Draw". Example effect: Log Inspector flame graph

The sub-millisecond functionality is now upstreamed to Log Inspector.

Go to file location using Find and Transform

This will expand your general-purpose VS Code toolbox!

Find and Transform is a powerful VS Code extension. I put the following in my keybindings.json file (command: Open Keyboard Shortcuts (JSON)):

{
  "key": "alt+q",
  "command": "findInCurrentFile",
  "args": {
    "description": "Open file at cursor",
    "find": "\"([^\"]+)\":([0-9]+)",
    "run": [
      "$${",
        "const pos = new vscode.Position($2, 0);",
        "const range = new vscode.Range(pos, pos);",
        "const options = {selection: range};",
        "const wsFolderUri = vscode.workspace.workspaceFolders[0].uri;",
        "const uri = await vscode.Uri.joinPath(wsFolderUri, '$1');",
        "await vscode.commands.executeCommand('vscode.open', uri, options);",
        
        // "await vscode.commands.executeCommand('workbench.action.quickOpen', `$1:$2`);",
      "}$$",
    ],
    "isRegex": true,
    "restrictFind": "line",
  }
}

Then, pressing alt+q will go to the file directly, assuming the logs contain the full relative path.

OCaml

Innovation. Community. Security.