Legend:
Library
Module
Module type
Parameter
Class
Class type
Hash tables and hash functions.
Hash tables are hashed association tables, with in-place modification.
Generic interface
val create : ?random:bool ->int ->('a, 'b)Hashtbl.t
Hashtbl.create n creates a new, empty hash table, with initial size n. For best results, n should be on the order of the expected number of elements that will be in the table. The table grows as needed, so n is just an initial guess.
The optional random parameter (a boolean) controls whether the internal organization of the hash table is randomized at each execution of Hashtbl.create or deterministic over all executions.
A hash table that is created with ~random:false uses a fixed hash function (Hashtbl.hash) to distribute keys among buckets. As a consequence, collisions between keys happen deterministically. In Web-facing applications or other security-sensitive applications, the deterministic collision patterns can be exploited by a malicious user to create a denial-of-service attack: the attacker sends input crafted to create many collisions in the table, slowing the application down.
A hash table that is created with ~random:true uses the seeded hash function Hashtbl.seeded_hash with a seed that is randomly chosen at hash table creation time. In effect, the hash function used is randomly selected among 2^{30} different hash functions. All these hash functions have different collision patterns, rendering ineffective the denial-of-service attack described above. However, because of randomization, enumerating all elements of the hash table using Hashtbl.fold or Hashtbl.iter is no longer deterministic: elements are enumerated in different orders at different runs of the program.
If no ~random parameter is given, hash tables are created in non-random mode by default. This default can be changed either programmatically by calling Hashtbl.randomize or by setting the R flag in the OCAMLRUNPARAM environment variable.
before4.00.0
the random parameter was not present and all hash tables were created in non-randomized mode.
Hashtbl.add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not removed, but simply hidden. That is, after performing Hashtbl.remove tbl x, the previous binding for x, if any, is restored. (Same behavior as with association lists.)
Hashtbl.find_all tbl x returns the list of all data associated with x in tbl. The current binding is returned first, then the previous bindings, in reverse order of introduction in the table.
Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y. If x is unbound in tbl, a binding of x to y is added to tbl. This is functionally equivalent to Hashtbl.remove tbl x followed by Hashtbl.add tbl x y.
val iter : ('a->'b-> unit)->('a, 'b)Hashtbl.t-> unit
Hashtbl.iter f tbl applies f to all bindings in table tbl. f receives the key as first argument, and the associated value as second argument. Each binding is presented exactly once to f.
The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.
The behavior is not defined if the hash table is modified by f during the iteration.
val filter_map_inplace : ('a->'b->'b option)->('a, 'b)Hashtbl.t-> unit
Hashtbl.filter_map_inplace f tbl applies f to all bindings in table tbl and update each binding depending on the result of f. If f returns None, the binding is discarded. If it returns Some new_val, the binding is update to associate the key to new_val.
val fold : ('a->'b->'c->'c)->('a, 'b)Hashtbl.t->'c->'c
Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ... kN are the keys of all bindings in tbl, and d1 ... dN are the associated values. Each binding is presented exactly once to f.
The order in which the bindings are passed to f is unspecified. However, if the table contains several bindings for the same key, they are passed to f in reverse order of introduction, that is, the most recent binding is passed first.
If the hash table was created in non-randomized mode, the order in which the bindings are enumerated is reproducible between successive runs of the program, and even between minor versions of OCaml. For randomized hash tables, the order of enumeration is entirely random.
The behavior is not defined if the hash table is modified by f during the iteration.
Hashtbl.length tbl returns the number of bindings in tbl. It takes constant time. Multiple bindings are counted once each, so Hashtbl.length gives the number of times Hashtbl.iter calls its first argument.
val randomize : unit -> unit
After a call to Hashtbl.randomize(), hash tables are created in randomized mode by default: Hashtbl.create returns randomized hash tables, unless the ~random:false optional parameter is given. The same effect can be achieved by setting the R parameter in the OCAMLRUNPARAM environment variable.
It is recommended that applications or Web frameworks that need to protect themselves against the denial-of-service attack described in Hashtbl.create call Hashtbl.randomize() at initialization time.
Note that once Hashtbl.randomize() was called, there is no way to revert to the non-randomized default behavior of Hashtbl.create. This is intentional. Non-randomized hash tables can still be created using Hashtbl.create ~random:false.
since 4.00.0
val is_randomized : unit -> bool
return if the tables are currently created in randomized mode by default
Hashtbl.stats tbl returns statistics about the table tbl: number of buckets, size of the biggest bucket, distribution of buckets by size.
since 4.00.0
Functorial interface
The functorial interface allows the use of specific comparison and hash functions, either for performance/security concerns, or because keys are not hashable/comparable with the polymorphic builtins.
For instance, one might want to specialize a table for integer keys:
module IntHash =
struct
type t = int
let equal i j = i=j
let hash i = i land max_int
end
module IntHashtbl = Hashtbl.Make(IntHash)
let h = IntHashtbl.create 17 in
IntHashtbl.add h 12 "hello"
This creates a new module IntHashtbl, with a new type 'a
IntHashtbl.t of tables from int to 'a. In this example, h contains string values so its type is string IntHashtbl.t.
Note that the new type 'a IntHashtbl.t is not compatible with the type ('a,'b) Hashtbl.t of the generic interface. For example, Hashtbl.length h would not type-check, you must use IntHashtbl.length.
Functor building an implementation of the hashtable structure. The functor Hashtbl.Make returns a structure containing a type key of keys and a type 'a t of hash tables associating data of type 'a to keys of type key. The operations perform similarly to those of the generic interface, but use the hashing and equality functions specified in the functor argument H instead of generic equality and hashing. Since the hash function is not seeded, the create operation of the result structure always returns non-randomized hash tables.
Functor building an implementation of the hashtable structure. The functor Hashtbl.MakeSeeded returns a structure containing a type key of keys and a type 'a t of hash tables associating data of type 'a to keys of type key. The operations perform similarly to those of the generic interface, but use the seeded hashing and equality functions specified in the functor argument H instead of generic equality and hashing. The create operation of the result structure supports the ~random optional parameter and returns randomized hash tables if ~random:true is passed or if randomization is globally on (see Hashtbl.randomize).
The polymorphic hash functions
val hash : 'a-> int
Hashtbl.hash x associates a nonnegative integer to any value of any type. It is guaranteed that if x = y or Pervasives.compare x y = 0, then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.
val seeded_hash : int ->'a-> int
A variant of Hashtbl.hash that is further parameterized by an integer seed.
since 4.00.0
val hash_param : int ->int ->'a-> int
Hashtbl.hash_param meaningful total x computes a hash value for x, with the same properties as for hash. The two extra integer parameters meaningful and total give more precise control over hashing. Hashing performs a breadth-first, left-to-right traversal of the structure x, stopping after meaningful meaningful nodes were encountered, or total nodes (meaningful or not) were encountered. If total as specified by the user exceeds a certain value, currently 256, then it is capped to that value. Meaningful nodes are: integers; floating-point numbers; strings; characters; booleans; and constant constructors. Larger values of meaningful and total means that more nodes are taken into account to compute the final hash value, and therefore collisions are less likely to happen. However, hashing takes longer. The parameters meaningful and total govern the tradeoff between accuracy and speed. As default choices, Hashtbl.hash and Hashtbl.seeded_hash take meaningful = 10 and total = 100.
val seeded_hash_param : int ->int ->int ->'a-> int
A variant of Hashtbl.hash_param that is further parameterized by an integer seed. Usage: Hashtbl.seeded_hash_param meaningful total seed x.