package patricia-tree

  1. Overview
  2. Docs

Create an Heterogeneous map with a custom NODE.

This is the same as MAP, but with simple type key being replaced by type constructor 'a key and 'b value being replaced by ('a,'b) value.

The main changes from MAP are:

  • The type of key is replaced by a type constructor 'k key. Because of that, most higher-order arguments require higher-ranking polymorphism, and we provide records that allows to pass them as arguments (e.g. polyiter, polymap, polyunion, etc.)
  • The type of the map (t) is still parameterized by an argument ('m t)
  • The type of value depend on both the type of the key and the type of the map, hence the type ('k,'m) value.
  • The type of some return values, like key-value pairs, must be concealed existentially, hence the KeyValue constructor.

Parameters

module Value : VALUE
module NODE : NODE with type 'a key = 'a Key.t and type ('key, 'map) value = ('key, 'map) Value.t

Signature

include BASE_MAP with type 'a key = 'a Key.t with type ('k, 'm) value = ('k, 'm) Value.t with type 'm t = 'm NODE.t
include NODE with type 'a key = 'a Key.t with type ('k, 'm) value = ('k, 'm) Value.t with type 'm t = 'm NODE.t

Types

type 'a key = 'a Key.t

The type of keys.

type ('k, 'm) value = ('k, 'm) Value.t

The type of value, which depends on the type of the key and the type of the map.

type 'm t = 'm NODE.t

The type of the map, which is parameterized by a type.

Constructors: build values

val empty : 'map t

The empty map

val leaf : 'key key -> ('key, 'map) value -> 'map t

A singleton leaf, similar to BASE_MAP.singleton

val branch : prefix:intkey -> branching_bit:mask -> tree0:'map t -> tree1:'map t -> 'map t

A branch node. This shouldn't be called externally unless you know what you're doing! Doing so could easily break the data structure's invariants.

When called, it assumes that:

  • Neither tree0 nor tree1 should be empty.
  • branching_bit should have a single bit set
  • prefix should be normalized (bits below branching_bit set to zero)
  • All elements of tree0 should have their to_int start by prefix followed by 0 at position branching_bit).
  • All elements of tree1 should have their to_int start by prefix followed by 0 at position branching_bit).

Destructors: access the value

type 'map view = private
  1. | Empty : 'map view
    (*

    Can happen only at the toplevel: there is no empty interior node.

    *)
  2. | Branch : {
    1. prefix : intkey;
    2. branching_bit : mask;
    3. tree0 : 'map t;
    4. tree1 : 'map t;
    } -> 'map view
    (*

    Branching bit contains only one bit set; the corresponding mask is (branching_bit - 1). The prefixes are normalized: the bits below the branching bit are set to zero (i.e. prefix & (branching_bit - 1) = 0).

    *)
  3. | Leaf : {
    1. key : 'key key;
    2. value : ('key, 'map) value;
    } -> 'map view
    (*

    A key -> value mapping.

    *)

This makes the map nodes accessible to the pattern matching algorithm; this corresponds 1:1 to the SimpleNode implementation. This just needs to be copy-and-pasted for every node type.

val is_empty : 'map t -> bool

Check if the map is empty. Should be constant time.

val view : 'a t -> 'a view

Convert the map to a view. Should be constant time.

type 'map key_value_pair =
  1. | KeyValue : 'a key * ('a, 'map) value -> 'map key_value_pair

Existential wrapper for the 'a parameter in a 'a key, ('a,'map) value pair

Basic functions

val min_binding : 'a t -> 'a key_value_pair
val max_binding : 'a t -> 'a key_value_pair
val singleton : 'a key -> ('a, 'b) value -> 'b t
val cardinal : 'a t -> int

The size of the map, O(n) complexity

val is_singleton : 'a t -> 'a key_value_pair option

is_singleton m returns Some(KeyValue(k,v)) if and only if m contains a unique binding k->v.

val find : 'key key -> 'map t -> ('key, 'map) value
val find_opt : 'key key -> 'map t -> ('key, 'map) value option

Same as find, but returns None for Not_found

val mem : 'key key -> 'map t -> bool

mem key map returns true iff key is bound in map, O(log(n)) complexity.

val remove : 'key key -> 'map t -> 'map t

Returns a map with the element removed, O(log(n)) complexity. Returns a physically equal map if the element is absent.

val pop_minimum : 'map t -> ('map key_value_pair * 'map t) option

pop_minimum m returns None if is_empty m, or Some(key,value,m') where (key,value) = min_binding m and m' = remove m key. O(log(n)) complexity.

val pop_maximum : 'map t -> ('map key_value_pair * 'map t) option

pop_maximum m returns None if is_empty m, or Some(key,value,m') where (key,value) = max_binding m and m' = remove m key. O(log(n)) complexity.

val insert : 'a key -> (('a, 'map) value option -> ('a, 'map) value) -> 'map t -> 'map t

insert key f map modifies or insert an element of the map; f takes None if the value was not previously bound, and Some old where old is the previously bound value otherwise. The function preserves physical equality when possible. O(log(n)) complexity. Preserves physical equality if the new value is physically equal to the old.

val update : 'a key -> (('a, 'map) value option -> ('a, 'map) value option) -> 'map t -> 'map t

update key f map modifies, insert, or remove an element from the map; f takes None if the value was not previously bound, and Some old where old is the previously bound value otherwise. The function preserves physical equality when possible. It returns None if the element should be removed O(log(n)) complexity. Preserves physical equality if the new value is physically equal to the old.

val add : 'key key -> ('key, 'map) value -> 'map t -> 'map t

Unconditionally adds a value in the map (independently from whether the old value existed). O(log(n)) complexity. Preserves physical equality if the new value is physically equal to the old.

Iterators

val split : 'key key -> 'map t -> 'map t * ('key, 'map) value option * 'map t

split key map splits the map into:

  • submap of map whose keys are smaller than key
  • value associated to key (if present)
  • submap of map whose keys are bigger than key Where the order is given by Key.to_int.
type 'map polyiter = {
  1. f : 'a. 'a key -> ('a, 'map) value -> unit;
}
val iter : 'map polyiter -> 'map t -> unit

iter f m calls f.f on all bindings of m, in the order given by Key.to_int

type ('acc, 'map) polyfold = {
  1. f : 'a. 'a key -> ('a, 'map) value -> 'acc -> 'acc;
}
val fold : ('acc, 'map) polyfold -> 'map t -> 'acc -> 'acc

fold f m acc returns f.f key_n value_n (... (f.f key_1 value_1 acc)) where (key_1, value_1) ... (key_n, value_n) are the bindings of m, in the order given by Key.to_int.

type 'map polypredicate = {
  1. f : 'a. 'a key -> ('a, 'map) value -> bool;
}
val filter : 'map polypredicate -> 'map t -> 'map t

filter f m returns the submap of m containing the bindings k->v such that f.f k v = true. f.f is called in the order given by Key.to_int

val for_all : 'map polypredicate -> 'map t -> bool

for_all f m checks that f holds on all bindings of m7 Short-circuiting.

In the following, the *no_share function allows taking arguments of different types (but cannot share subtrees of the map), while the default functions attempt to preserve and benefit from sharing the subtrees (using physical equality to detect sharing).

type ('map1, 'map2) polymap = {
  1. f : 'a. ('a, 'map1) value -> ('a, 'map2) value;
}
val map : ('map, 'map) polymap -> 'map t -> 'map t
val map_no_share : ('map1, 'map2) polymap -> 'map1 t -> 'map2 t

map f m and map_no_share f m replace all bindings (k,v) by (k, f.f v). Bindings are examined in the order given by Key.to_int.

type ('map1, 'map2) polymapi = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value;
}
val mapi : ('map, 'map) polymapi -> 'map t -> 'map t
val mapi_no_share : ('map1, 'map2) polymapi -> 'map1 t -> 'map2 t

mapi f m and mapi_no_share f m replace all bindings (k,v) by (k, f.f k v). Bindings are examined in the order given by Key.to_int.

type ('map1, 'map2) polyfilter_map = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value option;
}
val filter_map : ('map, 'map) polyfilter_map -> 'map t -> 'map t
val filter_map_no_share : ('map1, 'map2) polyfilter_map -> 'map1 t -> 'map2 t

filter_map m f and filter_map_no_share m f remove the bindings (k,v) for which f.f k v is None, and replaces the bindings (k,v) for which f.f k v is Some v' by (k,v'). Bindings are examined in the order given by Key.to_int.

type 'map polypretty = {
  1. f : 'a. Format.formatter -> 'a key -> ('a, 'map) value -> unit;
}
val pretty : ?pp_sep:(Format.formatter -> unit -> unit) -> 'map polypretty -> Format.formatter -> 'map t -> unit

Pretty-prints a map using the given formatter. pp_sep is called once between each binding, it defaults to Format.pp_print_cut. Bindings are printed in the order given by Key.to_int

Functions on pairs of maps

type ('map1, 'map2) polysame_domain_for_all2 = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value -> bool;
}
val reflexive_same_domain_for_all2 : ('map, 'map) polysame_domain_for_all2 -> 'map t -> 'map t -> bool

reflexive_same_domain_for_all2 f m1 m2 is true if and only if

  • m1 and m2 have the same domain (set of keys)
  • for all bindings (k, v1) in m1 and (k, v2) in m2, f.f k v1 v2 holds @assumes f.f is reflexive, i.e. f.f k v v = true to skip calls to equal subtrees. Calls f.f in ascending order of Key.to_int. Exits early if the domains mismatch.

It is useful to implement equality on maps:

let equal m1 m2 = reflexive_same_domain_for_all2
  { f = fun _ v1 v2 -> Value.equal v1 v2}
  m1 m2
val nonreflexive_same_domain_for_all2 : ('map1, 'map2) polysame_domain_for_all2 -> 'map1 t -> 'map2 t -> bool

nonreflexive_same_domain_for_all2 f m1 m2 is the same as reflexive_same_domain_for_all2, but doesn't assume f.f is reflexive. It thus calls f.f on every binding, in ascending order of Key.to_int. Exits early if the domains mismatch.

val reflexive_subset_domain_for_all2 : ('map, 'map) polysame_domain_for_all2 -> 'map t -> 'map t -> bool

reflexive_subset_domain_for_all2 f m1 m2 is true if and only if

  • m1's domain is a subset of m2's. (all keys defined in m1 are also defined in m2)
  • for all bindings (k, v1) in m1 and (k, v2) in m2, f.f k v1 v2 holds @assumes f.f is reflexive, i.e. f.f k v v = true to skip calls to equal subtrees. Calls f.f in ascending order of Key.to_int. Exits early if the domains mismatch.
type ('map1, 'map2, 'map3) polyunion = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value -> ('a, 'map3) value;
}
val idempotent_union : ('a, 'a, 'a) polyunion -> 'a t -> 'a t -> 'a t

idempotent_union f map1 map2 returns a map whose keys is the union of the keys of map1 and map2. f.f is used to combine the values of keys mapped in both maps. @assumes f.f idempotent (i.e. f key value value == value) f.f is called in the order given by Key.to_int. f.f is never called on physically equal values. Preserves physical equality as much as possible. Complexity is O(log(n)*Delta) where Delta is the number of different keys between map1 and map2.

type ('map1, 'map2, 'map3) polyinter = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value -> ('a, 'map3) value;
}
val idempotent_inter : ('a, 'a, 'a) polyinter -> 'a t -> 'a t -> 'a t

idempotent_inter f map1 map2 returns a map whose keys is the intersection of the keys of map1 and map2. f.f is used to combine the values a key is mapped in both maps. @assumes f.f idempotent (i.e. f key value value == value) f.f is called in the order given by Key.to_int. f.f is never called on physically equal values. Preserves physical equality as much as possible. Complexity is O(log(n)*Delta) where Delta is the number of different keys between map1 and map2.

val nonidempotent_inter_no_share : ('a, 'b, 'c) polyinter -> 'a t -> 'b t -> 'c t

nonidempotent_inter_no_share f map1 map2 is the same as idempotent_inter but doesn't preverse physical equality, doesn't assume f.f is idempotent, and can change the type of values. f.f is called on every shared binding. f.f is called in increasing order of keys. O(n) complexity

type ('map1, 'map2, 'map3) polyinterfilter = {
  1. f : 'a. 'a key -> ('a, 'map1) value -> ('a, 'map2) value -> ('a, 'map3) value option;
}
val idempotent_inter_filter : ('a, 'a, 'a) polyinterfilter -> 'a t -> 'a t -> 'a t

idempotent_inter_filter f map1 map2 is the same as idempotent_inter but f.f can return None to remove a binding from the resutling map.

type ('map1, 'map2, 'map3) polymerge = {
  1. f : 'a. 'a key -> ('a, 'map1) value option -> ('a, 'map2) value option -> ('a, 'map3) value option;
}
val slow_merge : ('map1, 'map2, 'map3) polymerge -> 'map1 t -> 'map2 t -> 'map3 t

This is the same as Stdlib.Map.S.merge

val disjoint : 'a t -> 'a t -> bool

disjoint m1 m2 is true iff m1 and m2 have disjoint domains

Conversion functions

val to_seq : 'a t -> 'a key_value_pair Seq.t

to_seq m iterates the whole map, in increasing order of Key.to_int

val to_rev_seq : 'a t -> 'a key_value_pair Seq.t

to_rev_seq m iterates the whole map, in decreasing order of Key.to_int

val add_seq : 'a key_value_pair Seq.t -> 'a t -> 'a t

add_seq s m adds all bindings of the sequence s to m in order.

val of_seq : 'a key_value_pair Seq.t -> 'a t

of_seq s creates a new map from the bindings of s. If a key is bound multiple times in s, the latest binding is kept

val of_list : 'a key_value_pair list -> 'a t

of_list l creates a new map from the bindings of l. If a key is bound multiple times in l, the latest binding is kept

val to_list : 'a t -> 'a key_value_pair list

to_list m returns the bindings of m as a list, in increasing order of Key.to_int

module WithForeign (Map2 : BASE_MAP with type 'a key = 'a key) : sig ... end

Operation with maps/set of different types

OCaml

Innovation. Community. Security.