package owl
type neuron_typ =
Owl_neural_generic.Make_Embedded(Owl_algodiff_primal_ops.D).Neuron.DilatedConv2D.neuron_typ =
{
mutable w : Optimise.Algodiff.t;
mutable b : Optimise.Algodiff.t;
mutable kernel : int array;
mutable stride : int array;
mutable rate : int array;
mutable padding : Owl_types.padding;
mutable init_typ : Init.typ;
mutable in_shape : int array;
mutable out_shape : int array;
}
val create :
?inputs:int array ->
Owl_types.padding ->
int array ->
int array ->
int array ->
Init.typ ->
neuron_typ
val connect : int array -> neuron_typ -> unit
val init : neuron_typ -> unit
val reset : neuron_typ -> unit
val mktag : int -> neuron_typ -> unit
val mkpar : neuron_typ -> Optimise.Algodiff.t array
val mkpri : neuron_typ -> Optimise.Algodiff.t array
val mkadj : neuron_typ -> Optimise.Algodiff.t array
val update : neuron_typ -> Optimise.Algodiff.t array -> unit
val copy : neuron_typ -> neuron_typ
val run : Optimise.Algodiff.t -> neuron_typ -> Optimise.Algodiff.t
val to_string : neuron_typ -> string
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>