package owl

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
include module type of struct include Owl_linalg_generic end

The module includes a set of advanced linear algebra operations such as singular value decomposition, and etc.

Currently, Linalg module supports dense matrix of four different number types, including ``float32``, ``float64``, ``complex32``, and ``complex64``. The support for sparse matrices will be provided in future.

Type definition
type ('a, 'b) t = ('a, 'b) Owl_dense_matrix_generic.t

Matrix type, a special case of N-dimensional array.

Basic functions
val inv : ('a, 'b) t -> ('a, 'b) t

``inv x`` calculates the inverse of an invertible square matrix ``x`` such that ``x *@ x = I`` wherein ``I`` is an identity matrix. (If ``x`` is singular, ``inv`` will return a useless result.)

val pinv : ?tol:float -> ('a, 'b) t -> ('a, 'b) t

``pinv x`` computes Moore-Penrose pseudoinverse of matrix ``x``. ``tol`` specifies the tolerance, the absolute value of the elements smaller than ``tol`` will be set to zeros.

val det : ('a, 'b) t -> 'a

``det x`` computes the determinant of a square matrix ``x``.

val logdet : ('a, 'b) t -> 'a

``logdet x`` computes the log of the determinant of a square matrix ``x``. It is equivalent to ``log (det x)`` but may provide more accuracy and efficiency.

val rank : ?tol:float -> ('a, 'b) t -> int

``rank x`` calculates the rank of a rectangular matrix ``x`` of shape ``m x n``. The function does so by counting the number of singular values of ``x`` which are beyond a pre-defined threshold ``tol``. By default, ``tol = max(m,n) * eps`` where ``eps = 1e-10``.

val norm : ?p:float -> ('a, 'b) t -> float

``norm ~p x`` computes the matrix p-norm of the passed in matrix ``x``.

Parameters: * ``p`` is the order of norm, the default value is 2. * ``x`` is the input matrix.

Returns: * If ``p = 1``, then returns the maximum absolute column sum of the matrix. * If ``p = 2``, then returns approximately ``max (svd x)``. * If ``p = infinity``, then returns the maximum absolute row sum of the matrix. * If ``p = -1``, then returns the minimum absolute column sum of the matrix. * If ``p = -2``, then returns approximately ``min (svd x)``. * If ``p = -infinity``, then returns the minimum absolute row sum of the matrix.

val vecnorm : ?p:float -> ('a, 'b) t -> float

``vecnorm ~p x`` calculates the generalised vector p-norm, defined as below. If ``x`` is a martrix, it will be flatten to a vector first. Different from the function of the same name in :doc:`owl_dense_ndarray_generic`, this function assumes the input is either 1d vector or 2d matrix.

.. math:: ||v||_p = \Big \sum_{k=0}^{N-1} |v_k|^p \Big^

/p

Parameters: * ``p`` is the order of norm, the default value is 2. * ``x`` is the input vector or matrix.

Returns: * If ``p = infinity``, then returns :math:`||v||_\infty = \max_i(|v(i)|)`. * If ``p = -infinity``, then returns :math:`||v||_

\infty

}

= \min_i(|v(i)|)`. * If ``p = 2`` and ``x`` is a matrix, then returns Frobenius norm of ``x``. * Otherwise returns generalised vector p-norm defined above.

val cond : ?p:float -> ('a, 'b) t -> float

``cond ~p x`` computes the p-norm condition number of matrix ``x``.

``cond ~p:1. x`` returns the 1-norm condition number;

``cond ~p:2. x`` or ``cond x`` returns the 2-norm condition number.

``cond ~p:infinity x`` returns the infinity norm condition number.

The default value of ``p`` is ``2.``

val rcond : ('a, 'b) t -> float

``rcond x`` returns an estimate for the reciprocal condition of ``x`` in 1-norm. If ``x`` is well conditioned, the returned result is near ``1.0``. If ``x`` is badly conditioned, the result is near ``0.``

Check matrix types
val is_square : ('a, 'b) t -> bool

``is_square x`` returns ``true`` if ``x`` is a square matrix otherwise ``false``.

val is_triu : ('a, 'b) t -> bool

``is_triu x`` returns ``true`` if ``x`` is upper triangular otherwise ``false``.

val is_tril : ('a, 'b) t -> bool

``is_tril x`` returns ``true`` if ``x`` is lower triangular otherwise ``false``.

val is_symmetric : ('a, 'b) t -> bool

``is_symmetric x`` returns ``true`` if ``x`` is symmetric otherwise ``false``.

val is_hermitian : (Stdlib.Complex.t, 'a) t -> bool

``is_hermitian x`` returns ``true`` if ``x`` is hermitian otherwise ``false``.

val is_diag : ('a, 'b) t -> bool

``is_diag x`` returns ``true`` if ``x`` is diagonal otherwise ``false``.

val is_posdef : ('a, 'b) t -> bool

``is_posdef x`` checks whether ``x`` is a positive semi-definite matrix.

Factorisation
val lu : ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * (int32, Bigarray.int32_elt) t

``lu x -> (l, u, ipiv)`` calculates LU decomposition of ``x``. The pivoting is used by default.

val lq : ?thin:bool -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t

``lq x -> (l, q)`` calculates the LQ decomposition of ``x``. By default, the reduced LQ decomposition is performed. But you can get full ``Q`` by setting parameter ``thin = false``.

val qr : ?thin:bool -> ?pivot:bool -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * (int32, Bigarray.int32_elt) t

``qr x`` calculates QR decomposition for an ``m`` by ``n`` matrix ``x`` as ``x = Q R``. ``Q`` is an ``m`` by ``n`` matrix (where ``Q^T Q = I``) and ``R`` is an ``n`` by ``n`` upper-triangular matrix.

The function returns a 3-tuple, the first two are ``q`` and ``r``, and the thrid is the permutation vector of columns. The default value of ``pivot`` is ``false``, setting ``pivot = true`` lets ``qr`` performs pivoted factorisation. Note that the returned indices are not adjusted to 0-based C layout.

By default, ``qr`` performs a reduced QR factorisation, full factorisation can be enabled by setting ``thin`` parameter to ``false``.

val chol : ?upper:bool -> ('a, 'b) t -> ('a, 'b) t

``chol x -> u`` calculates the Cholesky factorisation of a positive definite matrix ``x`` such that ``x = u' *@ u``. By default, the upper triangular matrix is returned. The lower triangular part can be obtained by setting the parameter ``upper = false``.

val svd : ?thin:bool -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('a, 'b) t

``svd x -> (u, s, vt)`` calculates the singular value decomposition of ``x``, and returns a 3-tuple ``(u,s,vt)``. By default, a reduced svd is performed: E.g., for a ``m x n`` matrix ``x`` wherein ``m <= n``, ``u`` is returned as an ``m`` by ``m`` orthogonal matrix, ``s`` an ``1`` by ``m`` row vector of singular values, and ``vt`` is the transpose of an ``n`` by ``m`` orthogonal rectangular matrix.

The full svd can be performed by setting ``thin = false``. Note that for complex numbers, the type of returned singular values are also complex, the imaginary part is zero.

val svdvals : ('a, 'b) t -> ('a, 'b) t

``svdvals x -> s`` performs the singular value decomposition of ``x`` like ``svd x``, but the function only returns the singular values without ``u`` and ``vt``. Note that for complex numbers, the return is also complex type.

val gsvd : ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('a, 'b) t

``gsvd x y -> (u, v, q, d1, d2, r)`` computes the generalised singular value decomposition of a pair of general rectangular matrices ``x`` and ``y``. ``d1`` and ``d2`` contain the generalised singular value pairs of ``x`` and ``y``. The shape of ``x`` is ``m x n`` and the shape of ``y`` is ``p x n``.

.. code-block:: ocaml

let x = Mat.uniform 5 5;; let y = Mat.uniform 2 5;; let u, v, q, d1, d2, r = Linalg.gsvd x y;; Mat.(u *@ d1 *@ r *@ transpose q =~ x);; Mat.(v *@ d2 *@ r *@ transpose q =~ y);;

Please refer to: `Intel MKL Reference <https://software.intel.com/en-us/mkl-developer-reference-c-ggsvd3>`_

val gsvdvals : ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``gsvdvals x y`` is similar to ``gsvd x y`` but only returns the singular values of the generalised singular value decomposition of ``x`` and ``y``.

val schur : otyp:('c, 'd) Bigarray.kind -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('c, 'd) t

``schur x -> (t, z, w)`` calculates Schur factorisation of ``x`` in the following form.

.. math:: X = Z T Z^H

Parameters: * ``otyp``: the complex type of eigen values. * ``x``: the ``n x n`` square matrix.

Returns: * ``t`` is (quasi) triangular Schur factor. * ``z`` is orthogonal/unitary Schur vectors. The eigen values are not sorted, they have the same order as that they appear on the diagonal of the output of Schur form ``t``. * ``w`` contains the eigen values of ``x``. ``otyp`` is used to specify the type of ``w``. It needs to be consistent with input type. E.g., if the input ``x`` is ``float32`` then ``otyp`` must be ``complex32``. However, if you use S, D, C, Z module, then you do not need to worry about ``otyp``.

val schur_tz : ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t

``schur_tz x`` is similar to ``schur`` but only returns ``(t, z)``.

val ordschur : otyp:('c, 'd) Bigarray.kind -> select:(int32, Bigarray.int32_elt) t -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('c, 'd) t

``ordschur ~select t z -> (r, p)`` reorders ``t`` and ``z`` returned by Schur factorization ``schur x -> (t, z)`` according ``select`` such that

.. math:: X = P R P^H

Parameters: * ``otyp``: the complex type of eigen values * ``select`` the logical vector to select eigenvalues, refer to ``select_ev``. * ``t``: the Schur matrix returned by ``schur x``. * ``z``: the unitary matrix ``z`` returned by ``schur x``.

Returns: * ``r``: reordered Schur matrix ``t``. * ``p``: reordered orthogonal matrix ``z``.

val qz : otyp:('c, 'd) Bigarray.kind -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('c, 'd) t

``qz x -> (s, t, q, z, w)`` calculates generalised Schur factorisation of ``x`` in the following form. It is also known as QZ decomposition.

.. math:: X = Q S Z^H Y = Z T Z^H

Parameters: * ``otyp``: the complex type of eigen values. * ``x``: the ``n x n`` square matrix. * ``y``: the ``n x n`` square matrix.

Returns: * ``s``: the upper quasitriangular matrices S. * ``t``: the upper quasitriangular matrices T. * ``q``: the unitary matrices Q. * ``z``: the unitary matrices Z. * ``w``: the generalised eigenvalue for a pair of matrices (X,Y).

val ordqz : otyp:('c, 'd) Bigarray.kind -> select:(int32, Bigarray.int32_elt) t -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('a, 'b) t * ('c, 'd) t

``ordqz ~select a b q z`` reorders the generalised Schur decomposition of a pair of matrices (X,Y) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of (X,Y).

val qzvals : otyp:('c, 'd) Bigarray.kind -> ('a, 'b) t -> ('a, 'b) t -> ('c, 'd) t

``qzvals ~otyp x y`` is similar to ``qz ~otyp x y`` but only returns the generalised eigen values.

val hess : ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t

``hess x -> (h, q)`` calculates the Hessenberg form of a given matrix ``x``. Both Hessenberg matrix ``h`` and unitary matrix ``q`` is returned, such that ``x = q *@ h *@ (transpose q)``.

.. math:: X = Q H Q^T

Eigenvalues & eigenvectors
val eig : ?permute:bool -> ?scale:bool -> otyp:('a, 'b) Bigarray.kind -> ('c, 'd) t -> ('a, 'b) t * ('a, 'b) t

``eig x -> v, w`` computes the right eigenvectors ``v`` and eigenvalues ``w`` of an arbitrary square matrix ``x``. The eigenvectors are column vectors in ``v``, their corresponding eigenvalues have the same order in ``w`` as that in ``v``.

Note that ``otyp`` specifies the complex type of the output, but you do not need worry about this parameter if you use S, D, C, Z modules in Linalg.

val eigvals : ?permute:bool -> ?scale:bool -> otyp:('a, 'b) Bigarray.kind -> ('c, 'd) t -> ('a, 'b) t

``eigvals x -> w`` is similar to ``eig`` but only computes the eigenvalues of an arbitrary square matrix ``x``.

Linear system of equations
val null : ('a, 'b) t -> ('a, 'b) t

``null a -> x`` computes an orthonormal basis ``x`` for the null space of ``a`` obtained from the singular value decomposition. Namely, ``a *@ x`` has negligible elements, ``M.col_num x`` is the nullity of ``a``, and ``transpose x *@ x = I``. Namely,

.. math:: X^T X = I

val triangular_solve : upper:bool -> ?trans:bool -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``triangular_linsolve a b -> x`` solves a linear system of equations ``a * x = b`` where ``a`` is either a upper or a lower triangular matrix. This function uses cblas ``trsm`` under the hood.

.. math:: AX = B

By default, ``trans = false`` indicates no transpose. If ``trans = true``, then function will solve ``A^T * x = b`` for real matrices; ``A^H * x = b`` for complex matrices.

.. math:: A^H X = B

val linsolve : ?trans:bool -> ?typ:[ `n | `u | `l ] -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``linsolve a b -> x`` solves a linear system of equations ``a * x = b`` in the following form. By default, ``typ=`n`` and the function use LU factorisation with partial pivoting when ``a`` is square and QR factorisation with column pivoting otherwise. The number of rows of ``a`` must equal the number of rows of ``b``. If ``a`` is a upper(lower) triangular matrix, the function calls the ``solve_triangular`` function when ``typ=`u``(``typ=`l``).

.. math:: AX = B

By default, ``trans = false`` indicates no transpose. If ``trans = true``, then function will solve ``A^T * x = b`` for real matrices; ``A^H * x = b`` for complex matrices.

.. math:: A^H X = B

The associated operator is ``/@``, so you can simply use ``a /@ b`` to solve the linear equation system to get ``x``. Please refer to :doc:`owl_operator`.

val linreg : ('a, 'b) t -> ('a, 'b) t -> 'a * 'a

``linreg x y -> (a, b)`` solves ``y = a + b*x`` using Ordinary Least Squares.

.. math:: Y = A + BX

val sylvester : ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``sylvester a b c`` solves a Sylvester equation in the following form. The function calls LAPACKE function ``trsyl`` solve the system.

.. math:: AX + XB = C

Parameters: * ``a`` : ``m x m`` matrix A. * ``b`` : ``n x n`` matrix B. * ``c`` : ``m x n`` matrix C.

Returns: * ``x`` : ``m x n`` matrix X.

val lyapunov : ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``lyapunov a q`` solves a continuous Lyapunov equation in the following form. The function calls LAPACKE function ``trsyl`` solve the system. In Matlab, the same function is called ``lyap``.

.. math:: AX + XA^H = Q

Parameters: * ``a`` : ``m x m`` matrix A. * ``q`` : ``n x n`` matrix Q.

Returns: * ``x`` : ``m x n`` matrix X.

val discrete_lyapunov : ?solver:[ `default | `bilinear | `direct ] -> ('a, 'b) t -> ('a, 'b) t -> ('a, 'b) t

``discrete_lyapunov a q`` solves a discrete-time Lyapunov equation in the following form.

.. math:: X - AXA^H = Q

Parameters: * ``a`` : ``m x m`` matrix A. * ``q`` : ``n x n`` matrix Q.

Returns: * ``x`` : ``m x n`` matrix X.

val care : (float, 'a) t -> (float, 'a) t -> (float, 'a) t -> (float, 'a) t -> (float, 'a) t

``care a b q r`` solves the continuous-time algebraic Riccati equation system in the following form. The algorithm is based on :cite:`laub1979schur`.

.. math:: A^T X + X A − X B R^

1

}

B^T X + Q = 0

Parameters: * ``a`` : real cofficient matrix A. * ``b`` : real cofficient matrix B. * ``q`` : real cofficient matrix Q. * ``r`` : real cofficient matrix R. R must be non-singular.

Returns: * ``x`` : a solution matrix X.

val dare : (float, 'a) t -> (float, 'a) t -> (float, 'a) t -> (float, 'a) t -> (float, 'a) t

``dare a b q r`` solves the discrete-time algebraic Riccati equation system in the following form. The algorithm is based on :cite:`laub1979schur`.

.. math:: A^T X A - X - (A^T X B) (B^T X B + R)^

1

}

(B^T X A) + Q = 0

Parameters: * ``a`` : real cofficient matrix A. A must be non-singular. * ``b`` : real cofficient matrix B. * ``q`` : real cofficient matrix Q. * ``r`` : real cofficient matrix R. R must be non-singular.

Returns: * ``x`` : a symmetric solution matrix X.

Low-level factorisation functions
val lufact : ('a, 'b) t -> ('a, 'b) t * (int32, Bigarray.int32_elt) t

``lufact x -> (a, ipiv)`` calculates LU factorisation with pivot of a general matrix ``x``.

val qrfact : ?pivot:bool -> ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t * (int32, Bigarray.int32_elt) t

``qrfact x -> (a, tau, jpvt)`` calculates QR factorisation of a general matrix ``x``.

val bkfact : ?upper:bool -> ?symmetric:bool -> ?rook:bool -> ('a, 'b) t -> ('a, 'b) t * (int32, Bigarray.int32_elt) t

``bk x -> (a, ipiv)`` calculates Bunch-Kaufman factorisation of ``x``. If ``symmetric = true`` then ``x`` is symmetric, if ``symmetric = false`` then ``x`` is hermitian. If ``rook = true`` the function performs bounded Bunch-Kaufman ("rook") diagonal pivoting method, if ``rook = false`` then Bunch-Kaufman diagonal pivoting method is used. ``a`` contains details of the block-diagonal matrix ``d`` and the multipliers used to obtain the factor ``u`` (or ``l``).

The ``upper`` indicates whether the upper or lower triangular part of ``x`` is stored and how ``x`` is factored. If ``upper = true`` then upper triangular part is stored: ``x = u*d*u'`` else ``x = l*d*l'``.

For ``ipiv``, it indicates the details of the interchanges and the block structure of ``d``. Please refer to the function ``sytrf``, ``hetrf`` in MKL documentation for more details.

Matrix functions
val mpow : ('a, 'b) t -> float -> ('a, 'b) t

``mpow x r`` returns the dot product of square matrix ``x`` with itself ``r`` times, and more generally raises the matrix to the ``r``th power. ``r`` is a float that must be equal to an integer; it can be be negative, zero, or positive. Non-integer exponents are not yet implemented. (If ``r`` is negative, ``mpow`` calls ``inv``, and warnings in documentation for ``inv`` apply.)

val expm : ('a, 'b) t -> ('a, 'b) t

``expm x`` computes the matrix exponential of ``x`` defined by

.. math:: e^x = \sum_k=0^\infty \frac

k! x^k

The function implements the scaling and squaring algorithm which uses Padé approximation to compute the matrix exponential :cite:`al2009new`.

val sinm : ('a, 'b) t -> ('a, 'b) t

``sinm x`` computes the matrix sine of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val cosm : ('a, 'b) t -> ('a, 'b) t

``cosm x`` computes the matrix cosine of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val tanm : ('a, 'b) t -> ('a, 'b) t

``tanm x`` computes the matrix tangent of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val sincosm : ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t

``sincosm x`` returns both matrix sine and cosine of ``x``.

val sinhm : ('a, 'b) t -> ('a, 'b) t

``sinhm x`` computes the hyperbolic matrix sine of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val coshm : ('a, 'b) t -> ('a, 'b) t

``coshm x`` computes the hyperbolic matrix cosine of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val tanhm : ('a, 'b) t -> ('a, 'b) t

``tanhm x`` computes the hyperbolic matrix tangent of input ``x``. The function uses ``expm`` to compute the matrix exponentials.

val sinhcoshm : ('a, 'b) t -> ('a, 'b) t * ('a, 'b) t

``sinhcoshm x`` returns both hyperbolic matrix sine and cosine of ``x``.

Helper functions
val select_ev : [ `LHP | `RHP | `UDI | `UDO ] -> ('a, 'b) t -> (int32, Bigarray.int32_elt) t

``select_ev keyword ev`` generates a logical vector (of same shape as ``ev``) from eigen values ``ev`` according to the passed in keywards.

  • ``LHP``: Left-half plane :math:`(real(e) < 0)`.
  • ``RHP``: Left-half plane :math:`(real(e) \ge 0)`.
  • ``UDI``: Left-half plane :math:`(abs(e) < 1)`.
  • ``UDO``: Left-half plane :math:`(abs(e) \ge 0)`.
val peakflops : ?n:int -> unit -> float

``peakflops ()`` returns the peak number of float point operations using ``Owl_cblas_basic.dgemm`` function. The default matrix size is ``2000 x 2000``, but you can change this by setting ``n`` to other numbers as you like.

OCaml

Innovation. Community. Security.