package owl

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
module Feedforward = Owl_neural_layer.Feedforward
module Init = Owl_neural_layer.Init
module Activation = Owl_neural_layer.Activation
module Learning_Rate = Owl_neural_optimise.Learning_Rate
module Regularisation = Owl_neural_optimise.Regularisation
val input : int array -> Owl_neural_layer.layer
val linear : ?init_typ:Init.typ -> ?inputs:int -> int -> Owl_neural_layer.layer
val linear_nobias : ?init_typ:Init.typ -> ?inputs:int -> int -> Owl_neural_layer.layer
val recurrent : ?init_typ:Init.typ -> act_typ:Owl_neural_layer.Activation.typ -> ?inputs:int -> int -> int -> Owl_neural_layer.layer
val lstm : ?inputs:int -> int -> Owl_neural_layer.layer
val gru : ?inputs:int -> int -> Owl_neural_layer.layer
val conv2d : ?padding:Owl_algodiff.S.padding -> ?inputs:int array -> int array -> int array -> Owl_neural_layer.layer
val conv3d : ?padding:Owl_algodiff.S.padding -> ?inputs:int array -> 'a -> int array -> int array -> Owl_neural_layer.layer
val fully_connected : ?init_typ:Init.typ -> ?inputs:int -> int -> Owl_neural_layer.layer
val max_pool2d : ?padding:Owl_algodiff.S.padding -> int array -> int array -> Owl_neural_layer.layer
val avg_pool2d : ?padding:Owl_algodiff.S.padding -> int array -> int array -> Owl_neural_layer.layer
val dropout : float -> Owl_neural_layer.layer
val reshape : ?conv_typ:bool -> ?inputs:int array -> int array -> Owl_neural_layer.layer
val flatten : ?conv_typ:bool -> unit -> Owl_neural_layer.layer
val print : Owl_neural_layer.network -> unit
val save : 'a -> string -> unit
val load : string -> Owl_neural_layer.network
OCaml

Innovation. Community. Security.