package octez-libs
Parameters
module L : sig ... end
Signature
module Curve = Mec.Curve.Curve25519.AffineEdwards
val point_encoding : (Curve.t, point L.repr, point) L.Encodings.encoding
Returns a Plompiler representation of a point
is_on_curve p
checks whether a point p
is on the curve
from_coordinates x y
constructs a point p = (x, y)
from coordinates x
and y
. The function also checks whether the point is on the curve (but not necessarily in the subgroup)
unsafe_from_coordinates x y
is similar to from_coordinates
but does not verify the point is on the curve. It can be used to build a variable of type point
without adding any constraint
get_x_coordinate p
returns a first coordinate x
of a point p
get_y_coordinate p
returns a second coordinate y
of a point p
cond_add p q b
returns p + b * q
, i.e., either a point addition p
and q
or a point p
based on the value b
scalar_mul s p
computes a point multiplication p
by a scalar s
. The scalar s
is encoded in little-endian order
multi_scalar_mul ls lp
computes the multi-scalar multiplication s₁·p₁ + s₂·p₂ + … + sₖ·pₖ
val scalar_order : Z.t
Returns the order of the prime-order subgroup of the elliptic curve group
val base_order : Z.t
Returns the prime number defining the underlying field
val to_compressed_bytes : point L.repr -> L.Bytes.tl L.repr L.t
to_compressed_bytes p
returns the compressed representation of a point p = (x, y)
in little-endian bytes pow2 255 * (x % 2) + y