Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
re.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
open Tree exception Syntax_error of string (* |print| -- prints string representation of re *) let print re = let rec stringify_ast = function | Literal a -> a | Epsilon -> "ε" | Union (r1, r2) -> "(" ^ stringify_ast r1 ^ " + " ^ stringify_ast r2 ^ ")" | Concat (r1, r2) -> "(" ^ stringify_ast r1 ^ " . " ^ stringify_ast r2 ^ ")" | Star r1 -> stringify_ast r1 ^ "*" | Empty -> "∅" in print_string (stringify_ast re); print_newline () ;; (* |export_graphviz| -- exports the AST in the DOT language for Graphviz *) let export_graphviz re = let count = ref 0 in let rec graphvizify parent = function | Literal a -> incr count; string_of_int !count ^ " [label=\"" ^ a ^ "\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int !count ^ "[label=\"\", ];\n" | Epsilon -> incr count; string_of_int !count ^ " [label=\"ε\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int !count ^ "[label=\"\", ];\n" | Union (r1, r2) -> incr count; let c = !count in graphvizify c r1 ^ graphvizify c r2 ^ string_of_int c ^ " [label=\"Union\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int c ^ "[label=\"\", ];\n" | Concat (r1, r2) -> incr count; let c = !count in graphvizify c r1 ^ graphvizify c r2 ^ string_of_int c ^ " [label=\"Concat\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int c ^ "[label=\"\", ];\n" | Star r1 -> incr count; let c = !count in graphvizify c r1 ^ string_of_int c ^ " [label=\"Star\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int c ^ "[label=\"\", ];\n" | Empty -> incr count; string_of_int !count ^ " [label=\"∅\", shape=ellipse, ];\n" ^ string_of_int parent ^ " -> " ^ string_of_int !count ^ "[label=\"\", ];\n" in "digraph G {\n0 [label=\"\", shape=none, height=0, width=0, ]\n" ^ graphvizify 0 re ^ "}" ;; (* |get_alphabet| -- returns the alphabet of the RE *) let rec get_alphabet = function | Literal a -> [ a ] | Epsilon | Empty -> [] | Union (r1, r2) | Concat (r1, r2) -> Utils.list_union (get_alphabet r1) (get_alphabet r2) | Star r1 -> get_alphabet r1 ;; let is_literal = function | Literal _ | Epsilon | Empty -> true | _ -> false ;; (* Recurses through tree of unions to find any repeated a (or starred) *) let rec contains a re = if re = a then true else ( match re with | Union (r1, r2) -> contains a r1 || contains a r2 | Star r1 -> if a = Epsilon then true else r1 = a | _ -> false) ;; let rec containsNonLit = function | Union (r1, r2) -> containsNonLit r1 || containsNonLit r2 | Epsilon | Empty | Concat (_, _) | Star _ -> true | _ -> false ;; (* checks if re is just w^n (n>0) *) let rec repeated w re = if re = w then true else ( match re with | Concat (r1, r2) -> repeated w r1 && repeated w r2 | _ -> false) ;; (* |simplify_re| -- recursively simplifies the regex *) let rec simplify_re = function (* Reduce by Kozen Axioms *) | Union (Union (r1, r2), r3) -> simplify_re (Union (r1, Union (r2, r3))) (* (a + b) + c = a + (b + c) *) | Union (r1, Empty) -> simplify_re r1 (* a + ∅ = a *) | Union (Empty, r1) -> simplify_re r1 (* ∅ + a = a *) | Concat (Concat (r1, r2), r3) -> simplify_re (Concat (r1, Concat (r2, r3))) (* (a.b).c = a.(b.c) *) | Concat (Epsilon, r1) -> simplify_re r1 (* ε.a = a *) | Concat (r1, Epsilon) -> simplify_re r1 (* a.ε = a *) | Union (Concat (r1, r2), Concat (r3, r4)) when r1 = r3 -> simplify_re (Concat (r1, Union (r2, r4))) (* ab + ac = a(b+c) *) | Union (Concat (r1, r2), Concat (r3, r4)) when r2 = r4 -> simplify_re (Concat (Union (r1, r3), r2)) (* ac + bc = (a+b)c *) | Concat (Empty, _) -> Empty (* ∅.a = ∅ *) | Concat (_, Empty) -> Empty (* a.∅ = ∅ *) | Union (Epsilon, Concat (r1, Star r2)) when r1 = r2 -> simplify_re (Star r1) (* ε + aa* = a* *) (* Order Unions lexicographically (for literals) *) | Union (a, Epsilon) when a <> Epsilon -> simplify_re (Union (Epsilon, a)) | Union (r1, Union (Epsilon, r2)) when r1 <> Epsilon -> simplify_re (Union (Epsilon, Union (r1, r2))) | Union (Literal r1, Union (Literal r2, r3)) when r2 < r1 -> simplify_re (Union (Literal r2, Union (Literal r1, r3))) | Union (Literal r1, Literal r2) when r2 < r1 -> simplify_re (Union (Literal r2, Literal r1)) | Union (r1, Union (Literal r2, r3)) when not (is_literal r1) -> simplify_re (Union (Literal r2, Union (r1, r3))) | Union (r1, Literal r2) when not (is_literal r1) -> simplify_re (Union (Literal r2, r1)) (* other reductions *) | Concat (Union (Epsilon, r1), Star r2) when r1 = r2 -> simplify_re (Star r1) (* (ε + a)a* = a* *) | Concat (Star r1, Union (Epsilon, r2)) when r1 = r2 -> simplify_re (Star r1) (* a*(ε + a) = a* *) | Concat (r1, Concat (Union (Epsilon, r2), Star r3)) when r2 = r3 -> simplify_re (Concat (r1, Star r2)) (* a.((ε+b).b* ) = ab* *) | Star (Concat (Star r1, Star r2)) -> simplify_re (Star (Union (r1, r2))) (* ( a*b* )* = (a + b)* *) | Concat (Star r1, r2) when r1 = r2 -> simplify_re (Concat (r1, Star r1)) (* a*a = aa* *) | Concat (Star r1, Concat (r2, r3)) when r1 = r2 -> simplify_re (Concat (r1, Concat (Star r2, r3))) (* a*(ab) = a(a*b) *) | Star (Star r1) -> simplify_re (Star r1) (* ( a* )* = a* *) | Star Empty -> Epsilon (* ∅* = ε *) | Star Epsilon -> Epsilon (* ε* = ε *) | Union (r1, r2) when contains r1 r2 -> simplify_re r2 (* a + ... + (a + b) = ... + a + b OR a + ... + a* = ... + a* *) | Union (r1, r2) when contains r2 r1 -> simplify_re r1 | Union (r1, Star r2) when repeated r2 r1 -> simplify_re (Star r2) (* aa...a + a* = a* *) | Union (Star r1, r2) when repeated r1 r2 -> simplify_re (Star r1) (* a* + aa...a = a* *) | Concat (Star r1, Star r2) when contains r1 r2 -> simplify_re (Star r2) (* a*b* = b* if a <= b *) | Concat (Star r1, Star r2) when contains r2 r1 -> simplify_re (Star r1) (* a*b* = a* if b <= a *) | Concat (Star r1, Concat (Star r2, r3)) when contains r1 r2 -> simplify_re (Concat (Star r2, r3)) (* a*(b*c) = b*c if a <= b *) | Concat (Star r1, Concat (Star r2, r3)) when contains r2 r1 -> simplify_re (Concat (Star r1, r3)) (* a*(b*c) = a*c if b <= a *) | Star r1 when let alph = get_alphabet r1 in List.length alph > 0 && containsNonLit r1 && List.for_all (fun a -> contains (Literal a) r1) alph -> let alph = get_alphabet r1 in simplify_re (Star (List.fold_right (fun a acc -> Union (Literal a, acc)) (List.tl alph) (Literal (List.hd alph)))) (* otherwise, simplify children *) | Literal a -> Literal a | Epsilon -> Epsilon | Union (r1, r2) -> Union (simplify_re r1, simplify_re r2) | Concat (r1, r2) -> Concat (simplify_re r1, simplify_re r2) | Star r1 -> Star (simplify_re r1) | Empty -> Empty ;; (* |simplify| -- simplifies input regex. Repeats until no more changes *) let simplify re = let r = ref re and newr = ref (simplify_re re) in while !r <> !newr do r := !newr; newr := simplify_re !r done; !r ;; (* |is_nullable| -- returns true if RE contains ε *) let rec is_nullable = function | Epsilon | Star _ -> true | Literal _ | Empty -> false | Union (r1, r2) -> is_nullable r1 || is_nullable r2 | Concat (r1, r2) -> is_nullable r1 && is_nullable r2 ;; (* |derivative| -- returns the Brzozowski derivative w.r.t w *) let rec derivative re w = match re with | Literal a when w = a -> Epsilon | Literal _ | Epsilon | Empty -> Empty | Star r -> Concat (derivative r w, Star r) | Union (r1, r2) -> Union (derivative r1 w, derivative r2 w) | Concat (r1, r2) when is_nullable r1 -> Union (Concat (derivative r1 w, r2), derivative r2 w) | Concat (r1, r2) -> Concat (derivative r1 w, r2) ;; (* |parse| -- converts string into AST representation *) let parse s = let lexbuf = Lexing.from_string s in try Parser.regex Lexer.token lexbuf with | Parsing.Parse_error -> let tok = Lexing.lexeme lexbuf in raise (Syntax_error ("Syntax Error at token " ^ tok)) ;;