package nx

  1. Overview
  2. Docs

Source file view.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
(* Lightweight view of tensor layout and helpers for reshaping. *)

type layout = C_contiguous | Strided

type t = {
  shape : Symbolic_shape.t;
  strides : int array; (* Always present, even for symbolic shapes *)
  offset : int;
  mask : (int * int) array option; (* bounds per dimension *)
  layout : layout;
}

(* ───── helpers ───── *)

let prod arr = Array.fold_left ( * ) 1 arr

(* compute C-contiguous strides for concrete shape *)
let compute_strides shape_array =
  let n = Array.length shape_array in
  if n = 0 then [||]
  else
    let strides = Array.make n 0 in
    strides.(n - 1) <- (if shape_array.(n - 1) = 0 then 0 else 1);
    for i = n - 2 downto 0 do
      strides.(i) <-
        (if shape_array.(i) = 0 then 0
         else strides.(i + 1) * max 1 shape_array.(i + 1))
    done;
    strides

(* canonicalize strides - keep original strides, don't force stride 0 for size
   1 *)
let canonicalize_strides _shape_array strides = strides

(* Try to get concrete shape, return None if symbolic *)
let eval_shape_opt shape = Symbolic_shape.eval shape

(* Check if strides represent a contiguous layout *)
let is_c_contiguous_strides shape_arr strides offset mask =
  offset = 0 && mask = None
  &&
  let expected = compute_strides shape_arr in
  let expected_canonical = canonicalize_strides shape_arr expected in
  Array.length strides = Array.length expected_canonical
  && Array.for_all2 ( = ) strides expected_canonical

(* ───── accessors ───── *)

let shape v = v.shape
let strides v = v.strides

let stride axis v =
  let ndim = Symbolic_shape.rank v.shape in
  if axis < 0 || axis >= ndim then
    Error.axis_out_of_bounds ~op:"stride" ~axis ~ndim ();
  Array.unsafe_get v.strides axis

let offset v = v.offset
let mask v = v.mask
let is_c_contiguous v = v.layout = C_contiguous

let dim axis v =
  let ndim = Symbolic_shape.rank v.shape in
  if axis < 0 || axis >= ndim then
    Error.axis_out_of_bounds ~op:"dim" ~axis ~ndim ();
  v.shape.(axis)

let ndim v = Symbolic_shape.rank v.shape

let numel v =
  let n = Symbolic_shape.rank v.shape in
  if n = 0 then Symbolic_shape.static 1
  else
    let rec prod_dims i acc =
      if i >= n then acc
      else
        let next_acc =
          match
            (Symbolic_shape.eval_dim acc, Symbolic_shape.eval_dim v.shape.(i))
          with
          | Some a, Some b -> Symbolic_shape.static (a * b)
          | _ -> Symbolic_shape.mul acc v.shape.(i)
        in
        prod_dims (i + 1) next_acc
    in
    prod_dims 1 v.shape.(0)

(* ───── view creation ───── *)

let create ?(offset = 0) ?strides ?mask shape =
  match Symbolic_shape.eval shape with
  | Some shape_arr ->
      (* Shape is fully static - compute strides normally *)
      let is_zero_size = Array.exists (( = ) 0) shape_arr in
      let current_shape =
        if is_zero_size then
          Symbolic_shape.of_ints (Array.map (fun s -> max s 0) shape_arr)
        else shape
      in
      let current_strides =
        match strides with
        | Some s -> canonicalize_strides shape_arr s
        | None -> compute_strides shape_arr
      in
      let current_offset = if is_zero_size then 0 else offset in
      let current_mask =
        if is_zero_size then None
        else
          match mask with
          | Some m
            when Array.for_all2 (fun (b, e) s -> b = 0 && e = s) m shape_arr ->
              None
          | _ -> mask
      in
      let new_layout =
        if
          is_c_contiguous_strides shape_arr current_strides current_offset
            current_mask
        then C_contiguous
        else Strided
      in
      {
        shape = current_shape;
        strides = current_strides;
        offset = current_offset;
        mask = current_mask;
        layout = new_layout;
      }
  | None ->
      (* Shape has symbolic dimensions - create symbolic strides *)
      let symbolic_strides =
        match strides with
        | Some s -> s
        | None ->
            (* For symbolic shapes, we can't compute exact strides, but we can
               create placeholder strides that maintain C-contiguous pattern *)
            let n = Symbolic_shape.rank shape in
            if n = 0 then [||]
            else
              (* Create strides assuming unit size for unknown dimensions *)
              let strides = Array.make n 1 in
              for i = n - 2 downto 0 do
                strides.(i) <- strides.(i + 1)
              done;
              strides
      in
      let layout =
        if offset = 0 && mask = None && strides = None then C_contiguous
        else Strided
      in
      { shape; strides = symbolic_strides; offset; mask; layout }

(* ───── offset & validation ───── *)

let linear_index view indices =
  let ndim = Symbolic_shape.rank view.shape in
  if Array.length indices <> ndim then
    Error.invalid ~op:"linear_index" ~what:"indices"
      ~reason:
        (Printf.sprintf "rank mismatch: %d vs %d" (Array.length indices) ndim)
      ();
  let physical_offset = ref view.offset in
  Array.iteri
    (fun i idx ->
      physical_offset := !physical_offset + (idx * view.strides.(i)))
    indices;
  !physical_offset

let is_valid view indices =
  match view.mask with
  | None -> true
  | Some mask_array ->
      if Array.length indices <> Array.length mask_array then false
      else
        Array.for_all2
          (fun idx (b, e) -> idx >= b && idx < e)
          indices mask_array

let can_be_strided view =
  (* All views now have strides, so check other conditions *)
  match (view.mask, eval_shape_opt view.shape) with
  | None, _ -> true
  | Some mask_array, Some shape_arr ->
      Array.for_all2 (fun (b, e) s -> b = 0 && e = s) mask_array shape_arr
  | Some _, None ->
      (* With symbolic shape and mask, conservatively return false *)
      false

(* ───── view manipulation ───── *)

let expand view new_shape =
  let old_ndim = Symbolic_shape.rank view.shape in
  let new_ndim = Symbolic_shape.rank new_shape in
  (* Allow expanding a scalar to any shape *)
  if old_ndim = 0 then
    (* Scalar case: broadcast to any shape *)
    let strides = Array.make new_ndim 0 in
    { view with shape = new_shape; strides }
  else if new_ndim <> old_ndim then
    Error.invalid ~op:"expand" ~what:"shape dimensions"
      ~reason:(Printf.sprintf "rank mismatch: %d vs %d" new_ndim old_ndim)
      ()
  else
    match (Symbolic_shape.eval view.shape, Symbolic_shape.eval new_shape) with
    | Some old_arr, Some new_arr ->
        if Array.exists (( = ) 0) old_arr then create new_shape
        else
          let strides =
            Array.mapi
              (fun i ns ->
                let s = old_arr.(i) in
                if s = ns then view.strides.(i)
                else if s = 1 then 0
                else
                  Error.cannot ~op:"expand" ~what:"expand"
                    ~from:(Printf.sprintf "dimension %d (size %d)" i s)
                    ~to_:(Printf.sprintf "size %d" ns)
                    ~reason:"can only expand singleton dimensions" ())
              new_arr
          in
          let mask =
            match view.mask with
            | None -> None
            | Some m ->
                Some
                  (Array.mapi
                     (fun i (b, e) ->
                       if old_arr.(i) = 1 && new_arr.(i) <> 1 then
                         if b = 0 && e = 1 then (0, new_arr.(i))
                         else
                           Error.invalid ~op:"expand"
                             ~what:"masked singleton dimension"
                             ~reason:
                               (Printf.sprintf
                                  "bounds [%d,%d] incompatible with expansion" b
                                  e)
                             ()
                       else (b, e))
                     m)
          in
          create ~offset:view.offset ?mask ~strides new_shape
    | _, _ ->
        (* At least one shape is symbolic - create view with appropriate
           strides *)
        create ~offset:view.offset ?mask:view.mask ~strides:view.strides
          new_shape

let permute view axes =
  let n = ndim view in
  if Array.length axes <> n then
    Error.invalid ~op:"permute" ~what:"axes array"
      ~reason:(Printf.sprintf "length %d != ndim %d" (Array.length axes) n)
      ();

  (* Validate permutation *)
  let seen = Array.make n false in
  Array.iter
    (fun ax ->
      if ax < 0 || ax >= n then
        Error.axis_out_of_bounds ~op:"permute" ~axis:ax ~ndim:n ();
      if seen.(ax) then
        Error.invalid ~op:"permute"
          ~what:(Printf.sprintf "axis %d" ax)
          ~reason:"duplicate axis" ();
      seen.(ax) <- true)
    axes;

  let new_shape = Array.init n (fun i -> view.shape.(axes.(i))) in
  let new_strides = Array.init n (fun i -> view.strides.(axes.(i))) in
  let new_mask =
    Option.map (fun m -> Array.init n (fun i -> m.(axes.(i)))) view.mask
  in
  create ~offset:view.offset ?mask:new_mask ~strides:new_strides
    (Array.of_list (Array.to_list new_shape))

let reshape view new_shape =
  (* Early return if shapes are identical *)
  if Symbolic_shape.equal view.shape new_shape then view
  else
    match (Symbolic_shape.eval view.shape, Symbolic_shape.eval new_shape) with
    | Some old_arr, Some new_arr -> (
        (* Both shapes are concrete *)
        let old_numel = prod old_arr in
        let new_numel = prod new_arr in

        (* Check size compatibility *)
        if old_numel <> new_numel && old_numel <> 0 && new_numel <> 0 then
          Error.shape_mismatch ~op:"reshape" ~expected:new_arr ~actual:old_arr
            () (* Handle zero-size tensors *)
        else if Array.exists (( = ) 0) old_arr || Array.exists (( = ) 0) new_arr
        then create ~offset:0 new_shape
          (* Check for masks - these complicate reshape *)
        else if view.mask <> None then
          Error.failed ~op:"reshape" ~what:"cannot reshape views with masks"
            ~hint:"call contiguous() first to create a mask-free copy" ()
          (* Fast path for C-contiguous views *)
        else if view.layout = C_contiguous then
          create ~offset:view.offset new_shape
        else if
          (* Special case: reshaping to/from scalar *)
          Array.length new_shape = 0
        then
          (* Reshaping to scalar - always valid if size is 1 *)
          create ~offset:view.offset new_shape
          (* Special case: all strides are 0 (broadcast from scalar) *)
        else if Array.for_all (( = ) 0) view.strides then
          (* When all strides are 0, we have a broadcast view. We can only
             reshape if all dimensions remain broadcast (stride 0) *)
          let new_strides = Array.make (Array.length new_shape) 0 in
          create ~offset:view.offset ~strides:new_strides new_shape
        (* Special case: only expanding/squeezing size-1 dimensions *)
          else
          let _old_non_one = Array.to_list old_arr |> List.filter (( <> ) 1) in
          let _new_non_one = Array.to_list new_arr |> List.filter (( <> ) 1) in

          (* Helper: try to reshape by only adding/removing size-1 dimensions *)
          let try_squeeze_unsqueeze () =
            let old_non_one = Array.to_list old_arr |> List.filter (( <> ) 1) in
            let new_non_one = Array.to_list new_arr |> List.filter (( <> ) 1) in

            if old_non_one = new_non_one then
              (* Just adding/removing size-1 dimensions *)
              let old_idx = ref 0 in
              let new_strides =
                Array.map
                  (fun dim ->
                    if dim = 1 then 0
                    else (
                      (* Skip size-1 dims in old shape *)
                      while
                        !old_idx < Array.length old_arr
                        && old_arr.(!old_idx) = 1
                      do
                        incr old_idx
                      done;
                      let stride = view.strides.(!old_idx) in
                      incr old_idx;
                      stride))
                  new_arr
              in
              Some new_strides
            else None
          in

          (* Helper: check if we can reshape by merging/splitting dimensions *)
          let try_merge_split () =
            (* Build list of non-unit dimensions with their properties *)
            let old_dims = ref [] in
            let new_dims = ref [] in

            for i = 0 to Array.length old_arr - 1 do
              if old_arr.(i) > 1 then
                old_dims := (old_arr.(i), view.strides.(i)) :: !old_dims
            done;
            old_dims := List.rev !old_dims;

            for i = 0 to Array.length new_arr - 1 do
              if new_arr.(i) > 1 then new_dims := new_arr.(i) :: !new_dims
            done;
            new_dims := List.rev !new_dims;

            (* Try to match old and new dimensions *)
            let rec match_dims old_dims new_dims =
              match (old_dims, new_dims) with
              | [], [] -> Some []
              | [], _ | _, [] -> None
              | (old_size, old_stride) :: old_rest, new_size :: new_rest ->
                  if old_size = new_size then
                    (* Direct match *)
                    match match_dims old_rest new_rest with
                    | Some rest_strides ->
                        Some ((new_size, old_stride) :: rest_strides)
                    | None -> None
                  else if old_size > new_size && old_size mod new_size = 0 then
                    (* Split dimension - for C-contiguous layout: When splitting
                       old_size into new_size * remaining_size: - First
                       dimension (new_size) gets stride = old_stride *
                       remaining_size - Remaining dimension keeps stride =
                       old_stride *)
                    let remaining_size = old_size / new_size in
                    let first_stride = old_stride * remaining_size in
                    let remaining_dims =
                      (remaining_size, old_stride) :: old_rest
                    in
                    match match_dims remaining_dims new_rest with
                    | Some rest_strides ->
                        Some ((new_size, first_stride) :: rest_strides)
                    | None -> None
                  else if new_size > old_size then
                    (* Try merging dimensions - they must be contiguous *)
                    let rec collect_merge size stride dims needed =
                      if size = needed then Some (dims, stride)
                      else if size > needed then None
                      else
                        match dims with
                        | [] -> None
                        | (next_size, next_stride) :: rest ->
                            (* For C-contiguous merging: current_stride = next_stride * next_size *)
                            (* Check if next dimension is contiguous with current *)
                            if stride = next_stride * next_size then
                              collect_merge (size * next_size) next_stride rest
                                needed
                            else None (* Not contiguous, can't merge *)
                    in
                    match
                      collect_merge old_size old_stride old_rest new_size
                    with
                    | Some (remaining, first_stride) -> (
                        match match_dims remaining new_rest with
                        | Some rest_strides ->
                            Some ((new_size, first_stride) :: rest_strides)
                        | None -> None)
                    | None -> None
                  else None
            in

            match match_dims !old_dims !new_dims with
            | None -> None
            | Some stride_map ->
                (* Build final strides array, including size-1 dimensions *)
                let new_strides = Array.make (Array.length new_arr) 0 in
                let map_idx = ref 0 in

                for i = 0 to Array.length new_arr - 1 do
                  if new_arr.(i) = 1 then new_strides.(i) <- 0
                  else
                    let _, stride = List.nth stride_map !map_idx in
                    new_strides.(i) <- stride;
                    incr map_idx
                done;

                Some new_strides
          in
          (* Try reshape strategies in order *)
          match try_squeeze_unsqueeze () with
          | Some new_strides ->
              create ~offset:view.offset ~strides:new_strides new_shape
          | None -> (
              match try_merge_split () with
              | Some new_strides ->
                  create ~offset:view.offset ~strides:new_strides new_shape
              | None ->
                  (* Include stride information in error message *)
                  let expected_strides = compute_strides new_arr in
                  let stride_str =
                    "["
                    ^ String.concat ","
                        (Array.to_list (Array.map string_of_int view.strides))
                    ^ "]"
                  in
                  let expected_str =
                    "["
                    ^ String.concat ","
                        (Array.to_list
                           (Array.map string_of_int expected_strides))
                    ^ "]"
                  in
                  Error.cannot ~op:"reshape" ~what:"reshape strided view"
                    ~from:(Shape.to_string old_arr)
                    ~to_:(Shape.to_string new_arr)
                    ~reason:
                      (Printf.sprintf "incompatible strides %s (expected %s)"
                         stride_str expected_str)
                    ~hint:
                      "call contiguous() before reshape to create a \
                       C-contiguous copy"
                    ()))
    | _, _ ->
        (* At least one shape is symbolic *)
        if view.layout = C_contiguous then create ~offset:view.offset new_shape
        else
          Error.failed ~op:"reshape"
            ~what:"cannot reshape symbolic non-contiguous view"
            ~hint:"bind all symbolic dimensions before reshaping" ()

(* helper used by [pad] and [shrink] *)
let unsafe_resize view arg new_mask_opt =
  let ndim = Symbolic_shape.rank view.shape in
  if Array.length arg <> ndim then
    Error.invalid ~op:"unsafe_resize" ~what:"argument array"
      ~reason:(Printf.sprintf "length %d != ndim %d" (Array.length arg) ndim)
      ();

  (* Don't require concrete shape here - work with what we have *)
  let strides = view.strides in

  let new_shape = Array.map (fun (a, b) -> b - a) arg in
  let new_offset = ref view.offset in
  Array.iteri
    (fun i (a, _) -> new_offset := !new_offset + (a * strides.(i)))
    arg;

  let final_mask =
    let shift_and_combine_mask old_mask_dim_bounds new_mask_dim_bounds
        offset_for_dim =
      let old_b, old_e = old_mask_dim_bounds in
      let new_b, new_e = new_mask_dim_bounds in
      let shifted_old_b = max 0 (old_b - offset_for_dim) in
      let shifted_old_e = max 0 (old_e - offset_for_dim) in
      (max shifted_old_b new_b, min shifted_old_e new_e)
    in
    match (view.mask, new_mask_opt) with
    | None, None -> None
    | Some old_m, None ->
        Some
          (Array.mapi
             (fun i (old_b, old_e) ->
               let a, _ = arg.(i) in
               let new_dim_size = new_shape.(i) in
               (max 0 (old_b - a), min new_dim_size (old_e - a)))
             old_m)
    | None, Some new_m -> Some new_m
    | Some old_m, Some new_m ->
        Some
          (Array.mapi
             (fun i (old_b_i, old_e_i) ->
               let new_m_b_i, new_m_e_i = new_m.(i) in
               let a_i, _ = arg.(i) in
               shift_and_combine_mask (old_b_i, old_e_i) (new_m_b_i, new_m_e_i)
                 a_i)
             old_m)
  in
  create ~offset:!new_offset ?mask:final_mask ~strides
    (Symbolic_shape.of_ints new_shape)

let pad view arg =
  let ndim = Symbolic_shape.rank view.shape in
  if Array.length arg <> ndim then
    Error.invalid ~op:"pad" ~what:"padding array"
      ~reason:(Printf.sprintf "length %d != ndim %d" (Array.length arg) ndim)
      ();
  if Array.for_all (fun (b, e) -> b = 0 && e = 0) arg then view
  else if Array.exists (fun (b, e) -> b < 0 || e < 0) arg then
    Error.invalid ~op:"pad" ~what:"padding values"
      ~reason:"negative values not allowed"
      ~hint:"use shrink or slice to remove elements" ()
  else
    match eval_shape_opt view.shape with
    | None ->
        Error.failed ~op:"pad" ~what:"cannot pad symbolic shape"
          ~hint:"bind all symbolic dimensions before padding" ()
    | Some shape_arr ->
        let zvarg =
          Array.mapi
            (fun i s ->
              let pad_before, pad_after = arg.(i) in
              (-pad_before, s + pad_after))
            shape_arr
        in
        let mask_for_pad =
          Array.mapi
            (fun i s_old ->
              let pad_before, _pad_after = arg.(i) in
              (pad_before, pad_before + s_old))
            shape_arr
        in
        unsafe_resize view zvarg (Some mask_for_pad)

let shrink view arg =
  let ndim = Symbolic_shape.rank view.shape in
  if Array.length arg <> ndim then
    Error.invalid ~op:"shrink" ~what:"bounds array"
      ~reason:(Printf.sprintf "length %d != ndim %d" (Array.length arg) ndim)
      ();
  match eval_shape_opt view.shape with
  | None ->
      Error.failed ~op:"shrink" ~what:"cannot shrink symbolic shape"
        ~hint:"bind all symbolic dimensions before shrinking" ()
  | Some shape_arr ->
      if Array.for_all2 (fun (b, e) s -> b = 0 && e = s) arg shape_arr then view
      else if
        Array.exists2
          (fun (b, e) s -> b < 0 || e < 0 || b > s || e > s || b >= e)
          arg shape_arr
      then
        Error.invalid ~op:"shrink" ~what:"bounds"
          ~reason:"must be within shape and start < end" ()
      else unsafe_resize view arg None

let flip view flip_axes_bools =
  let ndim = Symbolic_shape.rank view.shape in
  if Array.length flip_axes_bools <> ndim then
    Error.invalid ~op:"flip" ~what:"boolean array"
      ~reason:
        (Printf.sprintf "length %d != ndim %d"
           (Array.length flip_axes_bools)
           ndim)
      ();

  match eval_shape_opt view.shape with
  | None ->
      Error.failed ~op:"flip" ~what:"cannot flip symbolic shape"
        ~hint:"bind all symbolic dimensions before flipping" ()
  | Some shape_arr ->
      let strides = view.strides in

      let new_offset = ref view.offset in
      let new_strides = Array.copy strides in
      let new_mask =
        match view.mask with Some m -> Some (Array.copy m) | None -> None
      in
      Array.iteri
        (fun i do_flip ->
          if do_flip then
            let s_i = shape_arr.(i) in
            if s_i > 0 then (
              new_offset := !new_offset + ((s_i - 1) * strides.(i));
              new_strides.(i) <- -new_strides.(i);
              match new_mask with
              | Some m_arr ->
                  let b, e = m_arr.(i) in
                  m_arr.(i) <- (s_i - e, s_i - b)
              | None -> ()))
        flip_axes_bools;
      create ~offset:!new_offset ?mask:new_mask ~strides:new_strides view.shape

(* ───── view merging ───── *)

(* Try to merge two views into one *)
let merge v1 v2 =
  (* Case 1: v2 is contiguous - we can only merge if v1 is also contiguous and
     can be safely reshaped to v2's shape without losing information. *)
  if v2.layout = C_contiguous then
    if v1.layout = C_contiguous then
      (* Both are contiguous - safe to reshape v1 to v2's shape *)
      try Some (reshape v1 v2.shape) with _ -> None
    else
      (* v1 is not contiguous (e.g., transposed) - cannot merge without losing
         information *)
      None (* Case 2: v1 is contiguous and same shape - use v2 *)
  else if v1.layout = C_contiguous && Symbolic_shape.equal v1.shape v2.shape
  then Some v2
    (* Case 3: Handle symbolic shapes - if either shape is symbolic, try
       conservative merge *)
  else if
    (not (Symbolic_shape.is_static v1.shape))
    || not (Symbolic_shape.is_static v2.shape)
  then
    (* For symbolic shapes, we can still merge in some cases *)
    if v1.layout = C_contiguous then
      (* v1 is contiguous, v2 operates on it - often mergeable *)
      Some { v2 with offset = v1.offset + v2.offset }
    else
      (* Don't try to merge non-contiguous views with symbolic shapes *)
      None (* Case 4: v1 is contiguous and can be reshaped to v2 *)
  else if v1.layout = C_contiguous then
    match (Symbolic_shape.eval v1.shape, Symbolic_shape.eval v2.shape) with
    | Some s1_arr, Some s2_arr when prod s1_arr = prod s2_arr -> (
        (* v1 is C-contiguous and has same numel as v2 *)
        (* Check if v2 represents a permutation that would be lost by reshape *)
        let v2_is_permutation =
          (* A view is a permutation if it has the same strides values but in different order *)
          (* For example, transpose of [2,3] has strides [1,3] instead of [3,1] *)
          (* But we need to be careful with zero strides from size-1 dimensions *)
          match (Symbolic_shape.eval v2.shape, v2.strides) with
          | Some shape_arr, strides ->
              (* Filter out strides for size-1 dimensions (which have stride
                 0) *)
              let non_unit_pairs =
                Array.to_list
                  (Array.mapi
                     (fun i _ -> (shape_arr.(i), strides.(i)))
                     shape_arr)
                |> List.filter (fun (size, _) -> size > 1)
              in
              if List.length non_unit_pairs < 2 then
                (* Less than 2 non-unit dimensions - can't be a meaningful
                   permutation *)
                false
              else
                (* Check if the non-zero strides form a permutation *)
                (* For transpose, we'd have different stride ordering *)
                let strides_only =
                  List.map snd non_unit_pairs |> Array.of_list
                in
                let expected_strides =
                  let sizes_only =
                    List.map fst non_unit_pairs |> Array.of_list
                  in
                  compute_strides sizes_only
                in
                (* Check if strides match expected pattern for this shape *)
                (* A permutation would have different stride ordering *)
                not (Array.for_all2 ( = ) strides_only expected_strides)
          | _ -> false
        in
        if v2_is_permutation then
          (* v2 is a permutation (like transpose) - can't merge without losing
             info *)
          None
        else
          (* v2 is not a permutation - safe to reshape v1 to v2's shape *)
          try Some (reshape v1 v2.shape) with _ -> None)
    | _ -> None (* Case 5: Handle operations on broadcast views *)
  else if Array.exists (( = ) 0) v1.strides then
    (* v1 is a broadcast view - operations on it maintain broadcast semantics *)
    match Symbolic_shape.eval v2.shape with
    | Some _s2_arr ->
        (* For broadcast views, most operations just update shape/offset *)
        (* The key is that strides remain broadcast (0) for broadcast dimensions *)
        Some v2
    | _ -> None
    (* Case 6: Handle expand operations - if v2 is an expand of v1 *)
  else if v1.mask = None && v2.mask = None then
    match (Symbolic_shape.eval v1.shape, Symbolic_shape.eval v2.shape) with
    | Some s1_arr, Some s2_arr when Array.length s1_arr = Array.length s2_arr ->
        (* Check if v2 could be an expand of v1 *)
        let is_expand = ref true in
        for i = 0 to Array.length s1_arr - 1 do
          if s1_arr.(i) <> s2_arr.(i) && s1_arr.(i) <> 1 then is_expand := false
        done;
        (* Also check that strides have the same sign (no flips) *)
        let has_negative_v1 = Array.exists (fun s -> s < 0) v1.strides in
        let has_negative_v2 = Array.exists (fun s -> s < 0) v2.strides in
        if !is_expand && has_negative_v1 = has_negative_v2 then
          (* v2 is an expand of v1 - we can merge by applying expand to v1 *)
          try Some (expand v1 v2.shape) with _ -> None
        else None
    | _ -> None (* Case 7: Handle shrink views - if v2 has a mask *)
  else if v2.mask <> None && v1.mask = None then
    (* v2 is a shrink/slice operation - try to preserve it *)
    (* This handles the common case of slicing a regular tensor *)
    Some v2
  (* Default: can't merge *)
    else None

let simplify view =
  match Symbolic_shape.eval view.shape with
  | None -> view (* Can't simplify symbolic shapes *)
  | Some shape_arr ->
      (* Only simplify things that don't change the user-visible shape *)

      (* 1. Canonicalize mask that covers entire dimensions *)
      let mask =
        match view.mask with
        | Some m
          when Array.for_all2 (fun (b, e) s -> b = 0 && e = s) m shape_arr ->
            None (* Mask covers everything, remove it *)
        | m -> m
      in

      (* 2. Don't reshape - that changes user-visible shape! *)
      (* Just return with simplified mask if changed *)
      if mask <> view.mask then
        (* Don't use create here - it canonicalizes strides and loses negative values *)
        (* Just update the mask field and recalculate layout *)
        let new_layout =
          if
            mask = None && view.offset = 0
            && is_c_contiguous_strides shape_arr view.strides 0 None
          then C_contiguous
          else Strided
        in
        { view with mask; layout = new_layout }
      else view (* No simplification possible *)