Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
MiniBabySet.ml1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298(******************************************************************************) (* *) (* Menhir *) (* *) (* Copyright Inria. All rights reserved. This file is distributed under *) (* the terms of the GNU Library General Public License version 2, with a *) (* special exception on linking, as described in the file LICENSE. *) (* *) (******************************************************************************) (* This is a stripped-down copy of the weight-balanced binary trees found in the library Baby by François Pottier. *) type 'v tree = | TLeaf | TNode of { l : 'v tree; v : 'v; r : 'v tree; w : int } let[@inline] weight t = match t with | TLeaf -> 1 | TNode { w; _ } -> w let[@inline] cardinal t = weight t - 1 let alpha = 29 (* in percent *) let[@inline] not_left_heavy wl wr = alpha * wl <= (100-alpha) * wr let[@inline] left_heavy wl wr = not (not_left_heavy wl wr) let[@inline] not_right_heavy wl wr = not_left_heavy wr wl let[@inline] right_heavy wl wr = not (not_right_heavy wl wr) let[@inline] like_weights wl wr = not_left_heavy wl wr && not_right_heavy wl wr let[@inline] siblings l r = like_weights (weight l) (weight r) let rec check t = match t with | TLeaf -> () | TNode { l; r; w; _ } -> check l; check r; assert (w = weight l + weight r); assert (siblings l r) let[@inline] create'' w l v r = assert (w = weight l + weight r); (* This assertion can fail, (hopefully) just because a double rotation can temporarily create a node that does not satisfy the invariant. assert (siblings l r); *) TNode { l; v; r; w } let[@inline] create l v r = let w = weight l + weight r in create'' w l v r let[@inline] create' wl l v wr r = assert (wl = weight l && wr = weight r); let w = wl + wr in create'' w l v r let[@inline] singleton x = let w = 2 in create'' w TLeaf x TLeaf let impossible () = assert false let rotate_left l v r = match r with | TLeaf -> impossible() | TNode { l = rl; v = rv; r = rr; _ } -> create (create l v rl) rv rr let rotate_right l v r = match l with | TLeaf -> impossible() | TNode { l = ll; v = lv; r = lr; _ } -> create ll lv (create lr v r) let balance_right_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (right_heavy wl wr); match r with | TLeaf -> impossible() | TNode { l = rl; v = rv; r = rr; _ } -> let wrl = weight rl in let wrr = wr - wrl in assert (wrr = weight rr); if like_weights wl wrl && like_weights (wl + wrl) wrr then (* [rotate_left l v r] *) let w = wl + wr in create'' w (create' wl l v wrl rl) rv rr else rotate_left l v (rotate_right rl rv rr) let balance_left_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (left_heavy wl wr); match l with | TLeaf -> impossible() | TNode { l = ll; v = lv; r = lr; _ } -> let wll = weight ll in let wlr = wl - wll in assert (wlr = weight lr); if like_weights wlr wr && like_weights wll (wlr + wr) then (* [rotate_right l v r] *) let w = wl + wr in create'' w ll lv (create' wlr lr v wr r) else rotate_right (rotate_left ll lv lr) v r (* The following functions are unused. let[@inline] balance_maybe_right_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (not_left_heavy wl wr); if not_right_heavy wl wr then create' wl l v wr r else balance_right_heavy wl l v wr r let[@inline] balance_maybe_left_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (not_right_heavy wl wr); if not_left_heavy wl wr then create' wl l v wr r else balance_left_heavy wl l v wr r let rec join_maybe_left_heavy l v wr r = assert (wr = weight r); let wl = weight l in assert (not_right_heavy wl wr); if not_left_heavy wl wr then create' wl l v wr r else join_left_heavy wl l v wr r and join_left_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (left_heavy wl wr); match l with | TLeaf -> impossible() | TNode { l = ll; v = lv; r = lr; _ } -> let wll = weight ll in let wlr = wl - wll in assert (wlr = weight lr); balance_maybe_right_heavy wll ll lv (wlr + wr) (join_maybe_left_heavy lr v wr r) let rec join_maybe_right_heavy wl l v r = assert (wl = weight l); let wr = weight r in assert (not_left_heavy wl wr); if not_right_heavy wl wr then create' wl l v wr r else join_right_heavy wl l v wr r and join_right_heavy wl l v wr r = assert (wl = weight l && wr = weight r); assert (right_heavy wl wr); match r with | TLeaf -> impossible() | TNode { l = rl; v = rv; r = rr; _ } -> let wrl = weight rl in let wrr = wr - wrl in assert (wrr = weight rr); balance_maybe_left_heavy (wl + wrl) (join_maybe_right_heavy wl l v rl) rv wrr rr let join l v r = let wl = weight l and wr = weight r in if not_left_heavy wl wr then if not_right_heavy wl wr then create' wl l v wr r else join_right_heavy wl l v wr r else join_left_heavy wl l v wr r *) let rec quasi_siblings l r = if weight l <= weight r then like_weights (weight l) (weight r - 1) || like_weights (weight l + 1) (weight r) else quasi_siblings r l let join_quasi_siblings l v r = assert (quasi_siblings l r); let wl = weight l and wr = weight r in if not_left_heavy wl wr then if not_right_heavy wl wr then create' wl l v wr r else balance_right_heavy wl l v wr r else balance_left_heavy wl l v wr r let empty = TLeaf let rec add cmp x t = match t with | TLeaf -> singleton x | TNode { l; v; r; _ } -> let c = cmp x v in if c = 0 then t else if c < 0 then let l' = add cmp x l in if l == l' then t else join_quasi_siblings l' v r else let r' = add cmp x r in if r == r' then t else join_quasi_siblings l v r' let rec add_absent cmp x t = match t with | TLeaf -> singleton x | TNode { l; v; r; _ } -> let c = cmp x v in assert (c <> 0); if c < 0 then let l' = add_absent cmp x l in if l == l' then t else join_quasi_siblings l' v r else let r' = add_absent cmp x r in if r == r' then t else join_quasi_siblings l v r' let rec mem cmp x t = match t with | TLeaf -> false | TNode { l; v; r; _ } -> let c = cmp x v in c = 0 || mem cmp x (if c < 0 then l else r) let rec find cmp x t = match t with | TLeaf -> None | TNode { l; v; r; _ } -> let c = cmp x v in if c = 0 then Some v else find cmp x (if c < 0 then l else r) let rec iter f t = match t with | TLeaf -> () | TNode { l; v; r; _ } -> iter f l; f v; iter f r let rec for_all p t = match t with | TLeaf -> true | TNode { l; v; r; _ } -> for_all p l && p v && for_all p r let[@inline] is_singleton t = match t with | TLeaf -> false | TNode { w; _ } -> (* [w] is [weight t]. The weight of a singleton is 2. Relying on the weight removes the need to read the fields [l] and [r]. *) w = 2 let[@inline] extract_singleton t = match t with | TNode { l; v; r; w } -> assert (l = TLeaf && r = TLeaf && w = 2); v | _ -> assert false