package kcas
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file kcas.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
(* * Copyright (c) 2017, Nicolas ASSOUAD <nicolas.assouad@ens.fr> * Copyright (c) 2023, Vesa Karvonen <vesa.a.j.k@gmail.com> *) (* NOTE: You can adjust comment blocks below to select whether or not to use fenceless operations where it is safe to do so. Fenceless operations have been seen to provide significant performance improvements on ARM (Apple M1). *) (**) external fenceless_get : 'a Atomic.t -> 'a = "%field0" external fenceless_set : 'a Atomic.t -> 'a -> unit = "%setfield0" (**) (* let fenceless_get = Atomic.get let fenceless_set = Atomic.set *) module Backoff = Backoff module Timeout = struct exception Timeout let timeout () = raise Timeout [@@inline never] type t = Unset | Elapsed | Call of (unit -> unit) let unset = Atomic.make Unset (* Fenceless operations are safe here as the timeout state is not not visible outside of the library and we don't always need the latest value and, when we do, there is a fence after. *) let check state = if fenceless_get state == Elapsed then timeout () [@@inline] let set seconds state = Domain_local_timeout.set_timeoutf seconds @@ fun () -> match Atomic.exchange state Elapsed with | Call release_or_cancel -> release_or_cancel () | Unset | Elapsed -> () let alloc_opt = function | None -> unset | Some seconds -> let state = Atomic.make Unset in let cancel = set seconds state in fenceless_set state @@ Call cancel; state [@@inline never] let alloc_opt seconds = if seconds == None then unset else alloc_opt seconds [@@inline] let set_opt state = function | None -> () | Some seconds -> let cancel = set seconds state in fenceless_set state @@ Call cancel [@@inline never] let set_opt state seconds = if seconds != None then set_opt state seconds [@@inline] let await state release = match fenceless_get state with | Call _ as alive -> if Atomic.compare_and_set state alive (Call release) then alive else timeout () | Unset | Elapsed -> timeout () [@@inline never] let await state release = let alive = fenceless_get state in if alive == Unset then Unset else await state release [@@inline] let unawait state alive = match fenceless_get state with | Call _ as await -> if not (Atomic.compare_and_set state await alive) then timeout () | Unset | Elapsed -> timeout () [@@inline never] let unawait state alive = if alive != Unset then unawait state alive [@@inline] let cancel_alive alive = match alive with Call cancel -> cancel () | Unset | Elapsed -> () [@@inline never] let cancel_alive alive = if alive != Unset then cancel_alive alive [@@inline] let cancel state = cancel_alive (fenceless_get state) [@@inline] end module Id = struct let neg_id = Atomic.make (-1) let neg_ids n = Atomic.fetch_and_add neg_id (-n) [@@inline] let neg_id () = neg_ids 1 [@@inline] let nat_id = Atomic.make Int.max_int let nat_ids n = Atomic.fetch_and_add nat_id (-n) [@@inline] let nat_id () = nat_ids 1 [@@inline] end module Action : sig type t val noop : t val append : (unit -> unit) -> t -> t [@@inline] val run : t -> 'a -> 'a [@@inline] (** Always call this last as user code may raise. *) end = struct type t = unit -> unit let noop = Fun.id let append action t = if t == noop then action else fun x -> action (t x) [@@inline] let run t x = t (); x [@@inline] end type awaiter = unit -> unit let resume_awaiter awaiter = awaiter () [@@inline] let resume_awaiters = function | [] -> () | [ awaiter ] -> resume_awaiter awaiter | awaiters -> List.iter resume_awaiter awaiters [@@inline] type determined = [ `After | `Before ] type 'a state = { mutable before : 'a; mutable after : 'a; mutable casn : casn; awaiters : awaiter list; } and cass = | CASN : { loc : 'a loc; state : 'a state; lt : cass; gt : cass; mutable awaiters : awaiter list; } -> cass | NIL : cass and casn = status Atomic.t and status = [ `Undetermined of cass | determined ] (* NOTE: You can adjust comment blocks below to select whether or not to use an unsafe cast to avoid a level of indirection due to [Atomic.t] and reduce the size of a location by two words. This has been seen to provide significant performance improvements. *) (**) and 'a loc = { mutable _state : 'a state; id : int } external as_atomic : 'a loc -> 'a state Atomic.t = "%identity" let make_loc state id = { _state = state; id } [@@inline] (**) (* and 'a loc = { state : 'a state Atomic.t; id : int } let as_atomic loc = loc.state [@@inline] let make_loc state id = { state = Atomic.make state; id } [@@inline] *) let is_cmp casn state = state.casn != casn [@@inline] let is_cas casn state = state.casn == casn [@@inline] module Mode = struct type t = determined let lock_free = (`After :> t) let obstruction_free = (`Before :> t) exception Interference end let casn_after = Atomic.make `After let casn_before = Atomic.make `Before let rec release_after casn = function | NIL -> true | CASN { state; lt; gt; awaiters; _ } -> if lt != NIL then release_after casn lt |> ignore; if not (is_cmp casn state) then ( state.before <- state.after; state.casn <- casn_after; resume_awaiters awaiters); release_after casn gt let rec release_before casn = function | NIL -> false | CASN { state; lt; gt; awaiters; _ } -> if lt != NIL then release_before casn lt |> ignore; if not (is_cmp casn state) then ( state.after <- state.before; state.casn <- casn_before; resume_awaiters awaiters); release_before casn gt let release casn cass = function | `After -> release_after casn cass | `Before -> release_before casn cass let rec verify casn = function | NIL -> `After | CASN { loc; state; lt; gt; _ } -> ( if lt == NIL then (* Fenceless is safe as [finish] has a fence after. *) if is_cmp casn state && fenceless_get (as_atomic loc) != state then `Before else verify casn gt else match verify casn lt with | `After -> (* Fenceless is safe as [finish] has a fence after. *) if is_cmp casn state && fenceless_get (as_atomic loc) != state then `Before else verify casn gt | `Before -> `Before) let finish casn (`Undetermined cass as undetermined) (status : determined) = if Atomic.compare_and_set casn (undetermined :> status) (status :> status) then release casn cass status else (* Fenceless is safe as we have a fence above. *) fenceless_get casn == `After let a_cmp = 1 let a_cas = 2 let a_cmp_followed_by_a_cas = 4 let rec determine casn status = function | NIL -> status | CASN ({ loc; state; lt; gt; _ } as record) as eq -> let status = if lt != NIL then determine casn status lt else status in if status < 0 then status else let current = Atomic.get (as_atomic loc) in if state == current then let a_cas_or_a_cmp = 1 + Bool.to_int (is_cas casn state) in let a_cmp_followed_by_a_cas = a_cas_or_a_cmp * 2 land (status * 4) in determine casn (status lor a_cas_or_a_cmp lor a_cmp_followed_by_a_cas) gt else let matches_expected () = let expected = state.before in expected == current.after && (current.casn == casn_after || is_after current.casn) || expected == current.before && (current.casn == casn_before || not (is_after current.casn)) in if (not (is_cmp casn state)) && matches_expected () then (* Fenceless is safe as there are fences before and after. *) match fenceless_get casn with | `Undetermined _ -> (* We now know that the operation wasn't finished when we read [current], but it is possible that the [loc]ation has been updated since then by some other domain helping us (or even by some later operation). If so, then the [compare_and_set] below fails. Copying the awaiters from [current] is safe in either case, because we know that we have the [current] state that our operation is interested in. By doing the copying here, we at most duplicate work already done by some other domain. However, it is necessary to do the copy before the [compare_and_set], because afterwards is too late as some other domain might finish the operation after the [compare_and_set] and miss the awaiters. *) (match current.awaiters with | [] -> () | awaiters -> record.awaiters <- awaiters); if Atomic.compare_and_set (as_atomic loc) current state then let a_cmp_followed_by_a_cas = a_cas * 2 land (status * 4) in determine casn (status lor a_cas lor a_cmp_followed_by_a_cas) gt else determine casn status eq | #determined -> raise_notrace Exit else -1 and is_after casn = (* Fenceless at most gives old [Undetermined] and causes extra work. *) match fenceless_get casn with | `Undetermined cass as undetermined -> ( match determine casn 0 cass with | status -> finish casn undetermined (if a_cmp_followed_by_a_cas < status then verify casn cass else if 0 <= status then `After else `Before) | exception Exit -> (* Fenceless is safe as there was a fence before. *) fenceless_get casn == `After) | `After -> true | `Before -> false let determine_for_owner casn cass = (* The end result is a cyclic data structure, which is why we cannot initialize the [casn] atomic directly. *) let undetermined = `Undetermined cass in (* Fenceless is safe as [casn] is private at this point. *) fenceless_set casn undetermined; match determine casn 0 cass with | status -> if a_cmp_followed_by_a_cas < status then (* We only want to [raise Interference] in case it is the verify step that fails. The idea is that in [lock_free] mode the attempt might have succeeded as the compared locations would have been set in [lock_free] mode preventing interference. If failure happens before the verify step then the [lock_free] mode would have likely also failed. *) finish casn undetermined (verify casn cass) || raise_notrace Mode.Interference else a_cmp = status || finish casn undetermined (if 0 <= status then `After else `Before) | exception Exit -> (* Fenceless is safe as there was a fence before. *) fenceless_get casn == `After [@@inline] let impossible () = failwith "impossible" [@@inline never] let overlap () = failwith "kcas: location overlap" [@@inline never] let invalid_retry () = failwith "kcas: invalid use of retry" [@@inline never] type splay = Miss : splay | Hit : 'a loc * 'a state -> splay let make_casn loc state lt gt = CASN { loc; state; lt; gt; awaiters = [] } [@@inline] let rec splay ~hit_parent x = function | NIL -> (NIL, Miss, NIL) | CASN { loc = a; state = s; lt = l; gt = r; _ } as t -> if x < a.id && ((not hit_parent) || l != NIL) then match l with | NIL -> (NIL, Miss, t) | CASN { loc = pa; state = ps; lt = ll; gt = lr; _ } -> if x < pa.id && ((not hit_parent) || ll != NIL) then let lll, n, llr = splay ~hit_parent x ll in (lll, n, make_casn pa ps llr (make_casn a s lr r)) else if pa.id < x && ((not hit_parent) || lr != NIL) then let lrl, n, lrr = splay ~hit_parent x lr in (make_casn pa ps ll lrl, n, make_casn a s lrr r) else (ll, Hit (pa, ps), make_casn a s lr r) else if a.id < x && ((not hit_parent) || r != NIL) then match r with | NIL -> (t, Miss, NIL) | CASN { loc = pa; state = ps; lt = rl; gt = rr; _ } -> if x < pa.id && ((not hit_parent) || rl != NIL) then let rll, n, rlr = splay ~hit_parent x rl in (make_casn a s l rll, n, make_casn pa ps rlr rr) else if pa.id < x && ((not hit_parent) || rr != NIL) then let rrl, n, rrr = splay ~hit_parent x rr in (make_casn pa ps (make_casn a s l rl) rrl, n, rrr) else (make_casn a s l rl, Hit (pa, ps), rr) else (l, Hit (a, s), r) let new_state after = { before = after; after; casn = casn_after; awaiters = [] } [@@inline] let eval state = let before = state.before and after = state.after in if before == after || is_after state.casn then after else before [@@inline] module Retry = struct exception Later let later () = raise_notrace Later [@@inline never] let unless condition = if not condition then later () [@@inline] exception Invalid let invalid () = raise_notrace Invalid [@@inline never] end let add_awaiter loc before awaiter = (* Fenceless is safe as we have fence after. *) let state_old = fenceless_get (as_atomic loc) in let state_new = let awaiters = awaiter :: state_old.awaiters in { before; after = before; casn = casn_after; awaiters } in before == eval state_old && Atomic.compare_and_set (as_atomic loc) state_old state_new let[@tail_mod_cons] rec remove_first x' removed = function | [] -> removed := false; [] | x :: xs -> if x == x' then xs else x :: remove_first x' removed xs let rec remove_awaiter loc before awaiter = (* Fenceless is safe as we have fence after. *) let state_old = fenceless_get (as_atomic loc) in if before == eval state_old then let removed = ref true in let awaiters = remove_first awaiter removed state_old.awaiters in if !removed then let state_new = { before; after = before; casn = casn_after; awaiters } in if not (Atomic.compare_and_set (as_atomic loc) state_old state_new) then remove_awaiter loc before awaiter let block timeout loc before = let t = Domain_local_await.prepare_for_await () in let alive = Timeout.await timeout t.release in if add_awaiter loc before t.release then ( try t.await () with cancellation_exn -> let backtrace = Printexc.get_raw_backtrace () in remove_awaiter loc before t.release; Timeout.cancel_alive alive; Printexc.raise_with_backtrace cancellation_exn backtrace); Timeout.unawait timeout alive let rec update_no_alloc timeout backoff loc state f = (* Fenceless is safe as we have had a fence before if needed and there is a fence after. *) let state_old = fenceless_get (as_atomic loc) in let before = eval state_old in match f before with | after -> state.after <- after; if before == after then ( Timeout.cancel timeout; before) else if Atomic.compare_and_set (as_atomic loc) state_old state then ( state.before <- after; resume_awaiters state_old.awaiters; Timeout.cancel timeout; before) else update_no_alloc timeout (Backoff.once backoff) loc state f | exception Retry.Later -> block timeout loc before; update_no_alloc timeout backoff loc state f | exception exn -> Timeout.cancel timeout; raise exn let update_with_state timeout backoff loc f state_old = let before = eval state_old in match f before with | after -> if before == after then ( Timeout.cancel timeout; before) else let state = new_state after in if Atomic.compare_and_set (as_atomic loc) state_old state then ( resume_awaiters state_old.awaiters; Timeout.cancel timeout; before) else update_no_alloc timeout (Backoff.once backoff) loc state f | exception Retry.Later -> let state = new_state before in block timeout loc before; update_no_alloc timeout backoff loc state f | exception exn -> Timeout.cancel timeout; raise exn let rec exchange_no_alloc backoff loc state = let state_old = Atomic.get (as_atomic loc) in let before = eval state_old in if before == state.after then before else if Atomic.compare_and_set (as_atomic loc) state_old state then ( resume_awaiters state_old.awaiters; before) else exchange_no_alloc (Backoff.once backoff) loc state let is_obstruction_free casn loc = (* Fenceless is safe as we are accessing a private location. *) fenceless_get casn == (Mode.obstruction_free :> status) && 0 <= loc.id [@@inline] let rec cas_with_state loc before state state_old = let before' = state_old.before and after' = state_old.after in ((before == before' && before == after') || before == if is_after state_old.casn then after' else before') && (before == state.after || if Atomic.compare_and_set (as_atomic loc) state_old state then ( resume_awaiters state_old.awaiters; true) else (* We must retry, because compare is by value rather than by state. Because we don't usually change location state on no-op updates (to avoid unnecessary wakeups), we should mostly fail spuriously due to some other thread having installed or removed a waiter. Fenceless is safe as there was a fence before. *) cas_with_state loc before state (fenceless_get (as_atomic loc))) [@@inline] let inc x = x + 1 let dec x = x - 1 module Loc = struct type 'a t = 'a loc let make ?(mode = Mode.obstruction_free) after = let state = new_state after and id = if mode == Mode.obstruction_free then Id.nat_id () else Id.neg_id () in make_loc state id let make_array ?(mode = Mode.obstruction_free) n after = assert (0 <= n); let state = new_state after and id = (if mode == Mode.obstruction_free then Id.nat_ids n else Id.neg_ids n) - (n - 1) in Array.init n @@ fun i -> make_loc state (id + i) let get_id loc = loc.id [@@inline] let get loc = eval (Atomic.get (as_atomic loc)) let rec get_as timeout f loc state = let before = eval state in match f before with | value -> Timeout.cancel timeout; value | exception Retry.Later -> block timeout loc before; (* Fenceless is safe as there was already a fence before. *) get_as timeout f loc (fenceless_get (as_atomic loc)) | exception exn -> Timeout.cancel timeout; raise exn let get_as ?timeoutf f loc = get_as (Timeout.alloc_opt timeoutf) f loc (Atomic.get (as_atomic loc)) [@@inline] let get_mode loc = if loc.id < 0 then Mode.lock_free else Mode.obstruction_free [@@inline] let compare_and_set loc before after = let state = new_state after in let state_old = Atomic.get (as_atomic loc) in cas_with_state loc before state state_old let fenceless_update ?timeoutf ?(backoff = Backoff.default) loc f = let timeout = Timeout.alloc_opt timeoutf in update_with_state timeout backoff loc f (fenceless_get (as_atomic loc)) let fenceless_modify ?timeoutf ?backoff loc f = fenceless_update ?timeoutf ?backoff loc f |> ignore [@@inline] let update ?timeoutf ?(backoff = Backoff.default) loc f = let timeout = Timeout.alloc_opt timeoutf in update_with_state timeout backoff loc f (Atomic.get (as_atomic loc)) let modify ?timeoutf ?backoff loc f = update ?timeoutf ?backoff loc f |> ignore [@@inline] let exchange ?(backoff = Backoff.default) loc value = exchange_no_alloc backoff loc (new_state value) let set ?backoff loc value = exchange ?backoff loc value |> ignore let fetch_and_add ?backoff loc n = if n = 0 then get loc else (* Fenceless is safe as we always update. *) fenceless_update ?backoff loc (( + ) n) let incr ?backoff loc = (* Fenceless is safe as we always update. *) fenceless_update ?backoff loc inc |> ignore let decr ?backoff loc = (* Fenceless is safe as we always update. *) fenceless_update ?backoff loc dec |> ignore let has_awaiters loc = let state = Atomic.get (as_atomic loc) in state.awaiters != [] let fenceless_get loc = eval (fenceless_get (as_atomic loc)) end let insert cass loc state = let x = loc.id in match cass with | CASN { loc = a; lt = NIL; _ } when x < a.id -> CASN { loc; state; lt = NIL; gt = cass; awaiters = [] } | CASN { loc = a; gt = NIL; _ } when a.id < x -> CASN { loc; state; lt = cass; gt = NIL; awaiters = [] } | _ -> ( match splay ~hit_parent:false x cass with | _, Hit _, _ -> overlap () | lt, Miss, gt -> CASN { loc; state; lt; gt; awaiters = [] }) [@@inline] module Op = struct type t = CAS : 'a Loc.t * 'a * 'a -> t let make_cas loc before after = CAS (loc, before, after) [@@inline] let make_cmp loc expected = CAS (loc, expected, expected) [@@inline] let is_on_loc op loc = match op with CAS (loc', _, _) -> Obj.magic loc' == loc [@@inline] let get_id = function CAS (loc, _, _) -> loc.id [@@inline] let atomic = function | CAS (loc, before, after) -> if before == after then Loc.get loc == before else Loc.compare_and_set loc before after let atomically ?(mode = Mode.lock_free) = function | [] -> true | [ op ] -> atomic op | first :: rest -> let casn = Atomic.make (mode :> status) in let rec run cass = function | [] -> determine_for_owner casn cass | CAS (loc, before, after) :: rest -> if before == after && is_obstruction_free casn loc then (* Fenceless is safe as there are fences in [determine]. *) let state = fenceless_get (as_atomic loc) in before == eval state && run (insert cass loc state) rest else run (insert cass loc { before; after; casn; awaiters = [] }) rest in let (CAS (loc, before, after)) = first in if before == after && is_obstruction_free casn loc then (* Fenceless is safe as there are fences in [determine]. *) let state = fenceless_get (as_atomic loc) in before == eval state && run (CASN { loc; state; lt = NIL; gt = NIL; awaiters = [] }) rest else let state = { before; after; casn; awaiters = [] } in run (CASN { loc; state; lt = NIL; gt = NIL; awaiters = [] }) rest end module Xt = struct (* NOTE: You can adjust comment blocks below to select whether or not to use an unsafe cast to avoid a level of indirection due to [Atomic.t]. *) (**) type 'x t = { mutable _timeout : Timeout.t; mutable casn : casn; mutable cass : cass; mutable validate_counter : int; mutable post_commit : Action.t; } let timeout_unset () = Timeout.Unset [@@inline] external timeout_as_atomic : 'x t -> Timeout.t Atomic.t = "%identity" (**) (* type 'x t = { mutable _timeout : Timeout.t Atomic.t; mutable casn : casn; mutable cass : cass; mutable validate_counter : int; mutable post_commit : Action.t; } let timeout_unset () = Atomic.make Timeout.Unset [@@inline] let timeout_as_atomic r = r._timeout [@@inline] *) let validate_one casn loc state = let before = if is_cmp casn state then eval state else state.before in (* Fenceless is safe inside transactions as each log update has a fence. *) if before != eval (fenceless_get (as_atomic loc)) then Retry.invalid () [@@inline] let rec validate_all casn = function | NIL -> () | CASN { loc; state; lt; gt; _ } -> if lt != NIL then validate_all casn lt; validate_one casn loc state; validate_all casn gt let maybe_validate_log xt = let c0 = xt.validate_counter in let c1 = c0 + 1 in xt.validate_counter <- c1; (* Validate whenever counter reaches next power of 2. *) if c0 land c1 = 0 then ( Timeout.check (timeout_as_atomic xt); validate_all xt.casn xt.cass) [@@inline] let update0 loc f xt lt gt = (* Fenceless is safe inside transactions as each log update has a fence. *) let state = fenceless_get (as_atomic loc) in let before = eval state in match f before with | after -> let state = if before == after && is_obstruction_free xt.casn loc then state else { before; after; casn = xt.casn; awaiters = [] } in xt.cass <- CASN { loc; state; lt; gt; awaiters = [] }; before | exception exn -> let backtrace = Printexc.get_raw_backtrace () in xt.cass <- CASN { loc; state; lt; gt; awaiters = [] }; Printexc.raise_with_backtrace exn backtrace [@@inline] let update loc f xt state' lt gt = let state = Obj.magic state' in if is_cmp xt.casn state then ( let before = eval state in let after = f before in let state = if before == after then state else { before; after; casn = xt.casn; awaiters = [] } in xt.cass <- CASN { loc; state; lt; gt; awaiters = [] }; before) else let current = state.after in let state = { state with after = f current } in xt.cass <- CASN { loc; state; lt; gt; awaiters = [] }; current [@@inline] let unsafe_update ~xt loc f = maybe_validate_log xt; let x = loc.id in match xt.cass with | NIL -> update0 loc f xt NIL NIL | CASN { loc = a; lt = NIL; _ } as cass when x < a.id -> update0 loc f xt NIL cass | CASN { loc = a; gt = NIL; _ } as cass when a.id < x -> update0 loc f xt cass NIL | CASN { loc = a; state; lt; gt; _ } when Obj.magic a == loc -> update loc f xt state lt gt | cass -> ( match splay ~hit_parent:false x cass with | l, Miss, r -> update0 loc f xt l r | l, Hit (_loc', state'), r -> update loc f xt state' l r) [@@inline] let protect xt f x = let cass = xt.cass in let y = f x in assert (xt.cass == cass); y [@@inline] let get ~xt loc = unsafe_update ~xt loc Fun.id let set ~xt loc after = unsafe_update ~xt loc (fun _ -> after) |> ignore let modify ~xt loc f = unsafe_update ~xt loc (protect xt f) |> ignore let compare_and_swap ~xt loc before after = unsafe_update ~xt loc (fun actual -> if actual == before then after else actual) let exchange ~xt loc after = unsafe_update ~xt loc (fun _ -> after) let fetch_and_add ~xt loc n = unsafe_update ~xt loc (( + ) n) let incr ~xt loc = unsafe_update ~xt loc inc |> ignore let decr ~xt loc = unsafe_update ~xt loc dec |> ignore let update ~xt loc f = unsafe_update ~xt loc (protect xt f) let swap ~xt l1 l2 = set ~xt l1 @@ exchange ~xt l2 @@ get ~xt l1 let unsafe_modify ~xt loc f = unsafe_update ~xt loc f |> ignore let unsafe_update ~xt loc f = unsafe_update ~xt loc f let to_blocking ~xt tx = match tx ~xt with None -> Retry.later () | Some value -> value [@@inline] let to_nonblocking ~xt tx = match tx ~xt with value -> Some value | exception Retry.Later -> None [@@inline] let post_commit ~xt action = xt.post_commit <- Action.append action xt.post_commit let validate ~xt loc = let x = loc.id in match xt.cass with | NIL -> () | CASN { loc = a; lt = NIL; _ } when x < a.id -> () | CASN { loc = a; gt = NIL; _ } when a.id < x -> () | CASN { loc = a; state; _ } when Obj.magic a == loc -> validate_one xt.casn a state | cass -> ( match splay ~hit_parent:true x cass with | lt, Hit (a, state), gt -> xt.cass <- CASN { loc = a; state; lt; gt; awaiters = [] }; if Obj.magic a == loc then validate_one xt.casn a state | _, Miss, _ -> impossible ()) let is_in_log ~xt loc = let x = loc.id in match xt.cass with | NIL -> false | CASN { loc = a; lt = NIL; _ } when x < a.id -> false | CASN { loc = a; gt = NIL; _ } when a.id < x -> false | CASN { loc = a; _ } when Obj.magic a == loc -> true | cass -> ( match splay ~hit_parent:true x cass with | lt, Hit (a, state), gt -> xt.cass <- CASN { loc = a; state; lt; gt; awaiters = [] }; Obj.magic a == loc | _, Miss, _ -> impossible ()) let rec rollback casn cass_snap cass = if cass_snap == cass then cass else match cass with | NIL -> NIL | CASN { loc; state; lt; gt; _ } -> ( match splay ~hit_parent:false loc.id cass_snap with | lt_mark, Miss, gt_mark -> let lt = rollback casn lt_mark lt and gt = rollback casn gt_mark gt in let state = if is_cmp casn state then state else (* Fenceless is safe inside transactions as each log update has a fence. *) let current = fenceless_get (as_atomic loc) in if state.before != eval current then Retry.invalid () else current in CASN { loc; state; lt; gt; awaiters = [] } | lt_mark, Hit (loc, state), gt_mark -> let lt = rollback casn lt_mark lt and gt = rollback casn gt_mark gt in CASN { loc; state; lt; gt; awaiters = [] }) type 'x snap = cass * Action.t let snapshot ~xt = (xt.cass, xt.post_commit) let rollback ~xt (snap, post_commit) = xt.cass <- rollback xt.casn snap xt.cass; xt.post_commit <- post_commit let rec first ~xt tx = function | [] -> tx ~xt | tx' :: txs -> ( match tx ~xt with | value -> value | exception Retry.Later -> first ~xt tx' txs) let first ~xt = function | [] -> Retry.later () | tx :: txs -> first ~xt tx txs type 'a tx = { tx : 'x. xt:'x t -> 'a } [@@unboxed] let call ~xt { tx } = tx ~xt [@@inline] let rec add_awaiters awaiter casn = function | NIL as cont -> cont | CASN { loc; state; lt; gt; _ } as stop -> ( match if lt == NIL then lt else add_awaiters awaiter casn lt with | NIL -> if add_awaiter loc (if is_cmp casn state then eval state else state.before) awaiter then add_awaiters awaiter casn gt else stop | CASN _ as stop -> stop) let rec remove_awaiters awaiter casn stop = function | NIL -> () | CASN { loc; state; lt; gt; _ } as current -> if lt != NIL then remove_awaiters awaiter casn stop lt; if current != stop then ( remove_awaiter loc (if is_cmp casn state then eval state else state.before) awaiter; remove_awaiters awaiter casn stop gt) let initial_validate_period = 16 let reset_quick xt = xt.cass <- NIL; xt.validate_counter <- initial_validate_period; xt.post_commit <- Action.noop; xt [@@inline] let reset mode xt = xt.casn <- Atomic.make (mode :> status); reset_quick xt let rec commit backoff mode xt tx = match tx ~xt with | result -> ( match xt.cass with | NIL -> Timeout.cancel (timeout_as_atomic xt); Action.run xt.post_commit result | CASN { loc; state; lt = NIL; gt = NIL; _ } -> if is_cmp xt.casn state then ( Timeout.cancel (timeout_as_atomic xt); Action.run xt.post_commit result) else let before = state.before in state.before <- state.after; state.casn <- casn_after; (* Fenceless is safe inside transactions as each log update has a fence. *) let state_old = fenceless_get (as_atomic loc) in if cas_with_state loc before state state_old then ( Timeout.cancel (timeout_as_atomic xt); Action.run xt.post_commit result) else commit (Backoff.once backoff) mode (reset_quick xt) tx | cass -> ( match determine_for_owner xt.casn cass with | true -> Timeout.cancel (timeout_as_atomic xt); Action.run xt.post_commit result | false -> commit (Backoff.once backoff) mode (reset mode xt) tx | exception Mode.Interference -> commit (Backoff.once backoff) Mode.lock_free (reset Mode.lock_free xt) tx)) | exception Retry.Invalid -> Timeout.check (timeout_as_atomic xt); commit (Backoff.once backoff) mode (reset_quick xt) tx | exception Retry.Later -> ( if xt.cass == NIL then invalid_retry (); let t = Domain_local_await.prepare_for_await () in let alive = Timeout.await (timeout_as_atomic xt) t.release in match add_awaiters t.release xt.casn xt.cass with | NIL -> ( match t.await () with | () -> remove_awaiters t.release xt.casn NIL xt.cass; Timeout.unawait (timeout_as_atomic xt) alive; commit (Backoff.reset backoff) mode (reset_quick xt) tx | exception cancellation_exn -> let backtrace = Printexc.get_raw_backtrace () in remove_awaiters t.release xt.casn NIL xt.cass; Timeout.cancel_alive alive; Printexc.raise_with_backtrace cancellation_exn backtrace) | CASN _ as stop -> remove_awaiters t.release xt.casn stop xt.cass; Timeout.unawait (timeout_as_atomic xt) alive; commit (Backoff.once backoff) mode (reset_quick xt) tx) | exception exn -> Timeout.cancel (timeout_as_atomic xt); raise exn let commit ?timeoutf ?(backoff = Backoff.default) ?(mode = Mode.obstruction_free) tx = let casn = Atomic.make (mode :> status) and cass = NIL and validate_counter = initial_validate_period and post_commit = Action.noop in let xt = { _timeout = timeout_unset (); casn; cass; validate_counter; post_commit } in Timeout.set_opt (timeout_as_atomic xt) timeoutf; commit backoff mode xt tx.tx [@@inline] end