package kaun
Flax-inspired neural network library for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha1.tbz
sha256=8e277ed56615d388bc69c4333e43d1acd112b5f2d5d352e2453aef223ff59867
sha512=369eda6df6b84b08f92c8957954d107058fb8d3d8374082e074b56f3a139351b3ae6e3a99f2d4a4a2930dd950fd609593467e502368a13ad6217b571382da28c
doc/src/kaun/layer.ml.html
Source file layer.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
type 'layout tensor = (float, 'layout) Rune.t type module_ = { init : 'layout 'dev. rngs:Rune.Rng.key -> dtype:(float, 'layout) Rune.dtype -> 'layout Ptree.t; apply : 'layout 'dev. 'layout Ptree.t -> training:bool -> ?rngs:Rune.Rng.key -> 'layout tensor -> 'layout tensor; } let relu () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Rune.relu x); } let sigmoid () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Rune.sigmoid x); } let tanh () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Rune.tanh x); } let gelu () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Activations.gelu x); } let swish () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Activations.swish x); } let conv1d ~in_channels ~out_channels ?(kernel_size = 3) ?(stride = 1) ?(dilation = 1) ?(padding = `Same) () = { init = (fun (type l) ~rngs ~(dtype : (float, l) Rune.dtype) -> Rune.debug_with_context (Printf.sprintf "conv1d_%dx%d_%d_init" in_channels out_channels kernel_size) (fun () -> let rngs_split = Rune.Rng.split rngs in let rng1 = rngs_split.(0) in let fan_in = in_channels * kernel_size in let fan_out = out_channels * kernel_size in let limit = sqrt (6.0 /. float_of_int (fan_in + fan_out)) in let weight_shape = [| out_channels; in_channels; kernel_size |] in let w = Rune.Rng.uniform rng1 dtype weight_shape in let w = Rune.sub (Rune.mul w (Rune.scalar dtype (2.0 *. limit))) (Rune.scalar dtype limit) in let b = Rune.zeros dtype [| out_channels |] in Ptree.record_of [ ("weight", Tensor w); ("bias", Tensor b) ])); apply = (fun (type l) (params : l Ptree.t) ~training:_ ?rngs:_ (x : l tensor) -> match params with | Record fields -> let w = match Ptree.Record.find_opt "weight" fields with | Some (Tensor t) -> t | _ -> failwith "conv1d: missing or invalid weight parameter" in let b = match Ptree.Record.find_opt "bias" fields with | Some (Tensor t) -> t | _ -> failwith "conv1d: missing or invalid bias parameter" in Rune.debug_with_context (Printf.sprintf "conv1d_%dx%d_%d" in_channels out_channels kernel_size) (fun () -> let x = match padding with | `Same -> x | `Valid -> x | `Causal -> let pad_left = (kernel_size - 1) * dilation in let pad_cfg = [| (0, 0); (0, 0); (pad_left, 0) |] in Rune.pad pad_cfg 0.0 x in let padding_mode = match padding with | `Same -> `Same | `Valid -> `Valid | `Causal -> `Valid in let conv = Rune.convolve1d x w ~stride ~dilation ~padding_mode in let b_reshaped = Rune.reshape [| 1; out_channels; 1 |] b in Rune.add conv b_reshaped) | _ -> failwith "conv1d: invalid params structure"); } let conv2d ~in_channels ~out_channels ?(kernel_size = (3, 3)) () = let kh, kw = kernel_size in { init = (fun (type l) ~rngs ~(dtype : (float, l) Rune.dtype) -> Rune.debug_with_context (Printf.sprintf "conv2d_%dx%d_%dx%d_init" in_channels out_channels kh kw) (fun () -> let rngs_split = Rune.Rng.split rngs in let rng1 = rngs_split.(0) in let fan_in = in_channels * kh * kw in let fan_out = out_channels * kh * kw in let limit = sqrt (6.0 /. float_of_int (fan_in + fan_out)) in let weight_shape = [| out_channels; in_channels; kh; kw |] in let w = Rune.Rng.uniform rng1 dtype weight_shape in let w = Rune.sub (Rune.mul w (Rune.scalar dtype (2.0 *. limit))) (Rune.scalar dtype limit) in let b = Rune.zeros dtype [| out_channels |] in Ptree.record_of [ ("weight", Tensor w); ("bias", Tensor b) ])); apply = (fun (type l) (params : l Ptree.t) ~training:_ ?rngs:_ (x : l tensor) -> match params with | Record fields -> let w = match Ptree.Record.find_opt "weight" fields with | Some (Tensor t) -> t | _ -> failwith "conv2d: missing or invalid weight parameter" in let b = match Ptree.Record.find_opt "bias" fields with | Some (Tensor t) -> t | _ -> failwith "conv2d: missing or invalid bias parameter" in Rune.debug_with_context (Printf.sprintf "conv2d_%dx%d_%dx%d" in_channels out_channels kh kw) (fun () -> let conv = Rune.convolve2d x w ~stride:(1, 1) ~padding_mode:`Same in let b_reshaped = Rune.reshape [| 1; out_channels; 1; 1 |] b in Rune.add conv b_reshaped) | _ -> failwith "conv2d: invalid params structure"); } let linear ~in_features ~out_features ?weight_init ?bias_init () = { init = (fun ~rngs ~dtype -> Rune.debug_with_context (Printf.sprintf "linear_%dx%d_init" in_features out_features) (fun () -> let weight_init_f = match weight_init with | Some init -> init.Initializers.f | None -> (Initializers.glorot_uniform ()).f in let bias_init_f = match bias_init with | Some init -> init.Initializers.f | None -> (Initializers.zeros ()).f in let rngs_split = Rune.Rng.split rngs in let rng1 = rngs_split.(0) in let rng2 = rngs_split.(1) in let w = weight_init_f (Rune.Rng.to_int rng1) [| in_features; out_features |] dtype in let b = bias_init_f (Rune.Rng.to_int rng2) [| out_features |] dtype in Ptree.record_of [ ("weight", Tensor w); ("bias", Tensor b) ])); apply = (fun (type l) (params : l Ptree.t) ~training:_ ?rngs:_ (x : l tensor) -> Rune.debug_with_context (Printf.sprintf "linear_%dx%d" in_features out_features) (fun () -> match params with | Record fields -> let w = match Ptree.Record.find_opt "weight" fields with | Some (Tensor t) -> t | _ -> failwith "linear: missing or invalid weight parameter" in let b = match Ptree.Record.find_opt "bias" fields with | Some (Tensor t) -> t | _ -> failwith "linear: missing or invalid bias parameter" in let z = Rune.matmul x w in Rune.add z b | _ -> failwith "linear: invalid params structure")); } let dropout ~rate () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training ?rngs x -> if training then Ops.dropout ~rate ?rngs x else x); } (* alias for internal use *) let dropout_layer = dropout let batch_norm ~num_features () = { init = (fun ~rngs ~dtype -> Rune.debug_with_context (Printf.sprintf "batch_norm_%d_init" num_features) (fun () -> let _rngs_split = Rune.Rng.split rngs in let scale = Rune.ones dtype [| num_features |] in let bias = Rune.zeros dtype [| num_features |] in Ptree.record_of [ ("scale", Tensor scale); ("bias", Tensor bias) ])); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Record fields -> let scale = match Ptree.Record.find_opt "scale" fields with | Some (Tensor t) -> t | _ -> failwith "batch_norm: missing or invalid scale parameter" in let bias = match Ptree.Record.find_opt "bias" fields with | Some (Tensor t) -> t | _ -> failwith "batch_norm: missing or invalid bias parameter" in Rune.debug_with_context (Printf.sprintf "batch_norm_%d_apply" num_features) (fun () -> Ops.batch_norm ~scale ~bias ~num_features x) | _ -> failwith "batch_norm: invalid params structure"); } let max_pool2d ~kernel_size ?stride () = let stride = match stride with Some s -> s | None -> kernel_size in { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> let pooled, _ = Rune.max_pool2d x ~kernel_size ~stride in pooled); } let avg_pool2d ~kernel_size ?stride () = let stride = match stride with Some s -> s | None -> kernel_size in { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> Rune.avg_pool2d x ~kernel_size ~stride); } let flatten () = { init = (fun ~rngs:_ ~dtype:_ -> List []); apply = (fun _params ~training:_ ?rngs:_ x -> let shape = Rune.shape x in let batch_size = shape.(0) in let flat_size = Array.fold_left ( * ) 1 (Array.sub shape 1 (Array.length shape - 1)) in let x = if Rune.is_c_contiguous x then x else Rune.contiguous x in Rune.reshape [| batch_size; flat_size |] x); } let sequential models = { init = (fun ~rngs ~dtype -> let rec init_layers models acc rngs_current = match models with | [] -> Ptree.List (List.rev acc) | m :: rest -> let rngs_split = Rune.Rng.split rngs_current in let rngs_layer = rngs_split.(0) in let rngs_rest = rngs_split.(1) in let params = m.init ~rngs:rngs_layer ~dtype in init_layers rest (params :: acc) rngs_rest in init_layers models [] rngs); apply = (fun params ~training ?rngs:_ x -> match params with | List param_list -> let rec apply_layers models params x layer_idx = match (models, params) with | [], [] -> x | m :: ms, p :: ps -> let x' = m.apply p ~training x in apply_layers ms ps x' (layer_idx + 1) | _ -> failwith "sequential: mismatched models and params" in apply_layers models param_list x 1 | _ -> failwith "sequential: invalid params structure"); } let einsum ~einsum_str ~shape ?kernel_init () = { init = (fun ~rngs ~dtype -> let kernel_init_f = match kernel_init with | Some init -> init.Initializers.f | None -> (Initializers.glorot_uniform ()).f in let key = (Rune.Rng.split rngs).(0) in let w = kernel_init_f (Rune.Rng.to_int key) shape dtype in Ptree.Tensor w); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Tensor w -> Rune.einsum einsum_str [| x; w |] | _ -> failwith "einsum: invalid params"); } let rms_norm ~dim ?(eps = 1e-6) ?scale_init () = { init = (fun ~rngs ~dtype -> let scale_init_f = match scale_init with | Some init -> init.Initializers.f | None -> (Initializers.ones ()).f in let key = (Rune.Rng.split rngs).(0) in let scale = scale_init_f (Rune.Rng.to_int key) [| dim |] dtype in Ptree.Tensor scale); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Tensor scale -> Ops.rms_norm ~scale ~dim ~eps x | _ -> failwith "rms_norm: invalid params"); } let layer_norm ~dim ?(eps = 1e-5) ?(elementwise_affine = true) () = { init = (fun ~rngs:_ ~dtype -> if elementwise_affine then let gamma = Rune.ones dtype [| dim |] in let beta = Rune.zeros dtype [| dim |] in Ptree.record_of [ ("gamma", Tensor gamma); ("beta", Tensor beta) ] else List []); apply = (fun params ~training:_ ?rngs:_ x -> if elementwise_affine then match params with | Record fields -> let gamma = match Ptree.Record.find_opt "gamma" fields with | Some (Tensor t) -> t | _ -> failwith "layer_norm: missing gamma" in let beta = match Ptree.Record.find_opt "beta" fields with | Some (Tensor t) -> t | _ -> failwith "layer_norm: missing beta" in Ops.layer_norm ~gamma ~beta ~dim ~eps ~elementwise_affine:true x | _ -> failwith "layer_norm: invalid params" else Ops.layer_norm ~dim ~eps ~elementwise_affine:false x); } let embedding ~vocab_size ~embed_dim ?(scale = true) ?embedding_init () = { init = (fun ~rngs ~dtype -> let embedding_init_f = match embedding_init with | Some init -> init.Initializers.f | None -> (Initializers.normal_range ~mean:0.0 ~stddev:0.02 ()).f in let key = (Rune.Rng.split rngs).(0) in let embedding = embedding_init_f (Rune.Rng.to_int key) [| vocab_size; embed_dim |] dtype in Ptree.Tensor embedding); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Tensor embedding -> (* Cast input to int32 for embedding lookup *) let indices = Rune.cast Rune.int32 x in Ops.embedding ~embedding ~embed_dim ~scale indices | _ -> failwith "embedding: invalid params"); } let multi_head_attention ~embed_dim ~num_heads ?(num_kv_heads = num_heads) ?head_dim ?(dropout = 0.0) ?(use_qk_norm = false) ?attn_logits_soft_cap ?query_pre_attn_scalar () = let head_dim = Option.value head_dim ~default:(embed_dim / num_heads) in assert (head_dim * num_heads = embed_dim); { init = (fun ~rngs ~dtype -> let num_keys = if use_qk_norm then 6 else 4 in let keys = Rune.Rng.split ~n:num_keys rngs in let init_fn = (Initializers.glorot_uniform ()).f in let q_proj = init_fn (Rune.Rng.to_int keys.(0)) [| embed_dim; num_heads * head_dim |] dtype in let k_proj = init_fn (Rune.Rng.to_int keys.(1)) [| embed_dim; num_kv_heads * head_dim |] dtype in let v_proj = init_fn (Rune.Rng.to_int keys.(2)) [| embed_dim; num_kv_heads * head_dim |] dtype in let out_proj = init_fn (Rune.Rng.to_int keys.(3)) [| num_heads * head_dim; embed_dim |] dtype in let params_list = [ ("q_proj", Ptree.Tensor q_proj); ("k_proj", Ptree.Tensor k_proj); ("v_proj", Ptree.Tensor v_proj); ("out_proj", Ptree.Tensor out_proj); ] in (* Add QK normalization parameters if enabled *) let params_list = if use_qk_norm then let q_norm_scale = Rune.ones dtype [| head_dim |] in let k_norm_scale = Rune.ones dtype [| head_dim |] in params_list @ [ ("q_norm_scale", Ptree.Tensor q_norm_scale); ("k_norm_scale", Ptree.Tensor k_norm_scale); ] else params_list in Ptree.record_of params_list); apply = (fun params ~training ?rngs x -> (* TODO: Support attention masks properly The current module interface only accepts a single tensor x. We need to either: * Accept a record/tuple type that includes both input and mask * Use a context/state mechanism to pass masks through layers * Create a specialized attention module type with richer interface For now, attention_mask is always None. *) let query, key, value, attention_mask = match x with | x when Rune.ndim x = 3 -> (* Self-attention: query = key = value = x *) (x, None, None, None) | _ -> (* For now, assume self-attention *) (x, None, None, None) in match params with | Record fields -> let get_weight name = match Ptree.Record.find_opt name fields with | Some (Tensor t) -> t | _ -> failwith ("multi_head_attention: missing " ^ name) in let q_proj = get_weight "q_proj" in let k_proj = get_weight "k_proj" in let v_proj = get_weight "v_proj" in let out_proj = get_weight "out_proj" in (* Apply query pre-attention scalar if specified *) let scale = match query_pre_attn_scalar with | Some s -> s | None -> 1.0 /. sqrt (float_of_int head_dim) in (* Apply dropout only during training *) let effective_dropout = if training then dropout else 0.0 in (* Pass RNGs only when dropout > 0 and training *) let rngs_for_dropout = if training && dropout > 0.0 then rngs else None in let output, _attn_weights_opt = Ops.multi_head_attention ~q_proj_w:q_proj ~k_proj_w:k_proj ~v_proj_w:v_proj ~out_proj_w:out_proj ?q_bias:None ?k_bias:None ?v_bias:None ?out_bias:None ?k_bias_kv:None ?v_bias_kv:None ~query ?key ?value ?attention_mask ?is_causal:None ?rngs:rngs_for_dropout ~embed_dim ~num_heads ~num_kv_heads ~head_dim ~dropout:effective_dropout ~bias:false ~add_bias_kv:false ~scale () in (* Apply attention logits soft cap if specified *) let output = match attn_logits_soft_cap with | Some cap -> (* Soft capping: tanh(logits / cap) * cap *) let scaled = Rune.div output (Rune.scalar (Rune.dtype output) cap) in let capped = Rune.tanh scaled in Rune.mul capped (Rune.scalar (Rune.dtype output) cap) | None -> output in output | _ -> failwith "multi_head_attention: invalid params"); } let mlp ~in_features ~ ~out_features ?(activation = `gelu) ?(dropout = 0.0) () = let act = match activation with | `relu -> relu () | `gelu -> gelu () | `swish -> swish () in sequential [ linear ~in_features ~out_features:hidden_features (); act; dropout_layer ~rate:dropout (); linear ~in_features:hidden_features ~out_features (); dropout_layer ~rate:dropout (); ] let transformer_encoder_layer ~ ~num_attention_heads ~intermediate_size ?( = 0.1) ?(attention_probs_dropout_prob = 0.1) ?(layer_norm_eps = 1e-12) ?( = `gelu) ?(use_bias = true) () = { init = (fun ~rngs ~dtype -> let keys = Rune.Rng.split ~n:10 rngs in let init_fn = (Initializers.glorot_uniform ()).f in (* Attention weights *) let q_weight = init_fn (Rune.Rng.to_int keys.(0)) [| hidden_size; hidden_size |] dtype in let k_weight = init_fn (Rune.Rng.to_int keys.(1)) [| hidden_size; hidden_size |] dtype in let v_weight = init_fn (Rune.Rng.to_int keys.(2)) [| hidden_size; hidden_size |] dtype in let attn_out_weight = init_fn (Rune.Rng.to_int keys.(3)) [| hidden_size; hidden_size |] dtype in (* FFN weights *) let inter_weight = init_fn (Rune.Rng.to_int keys.(4)) [| hidden_size; intermediate_size |] dtype in let out_weight = init_fn (Rune.Rng.to_int keys.(5)) [| intermediate_size; hidden_size |] dtype in (* Biases (if enabled) *) let bias_params = if use_bias then let zero_init = (Initializers.zeros ()).f in [ ("q_bias", Ptree.Tensor (zero_init 0 [| hidden_size |] dtype)); ("k_bias", Ptree.Tensor (zero_init 0 [| hidden_size |] dtype)); ("v_bias", Ptree.Tensor (zero_init 0 [| hidden_size |] dtype)); ( "attn_out_bias", Ptree.Tensor (zero_init 0 [| hidden_size |] dtype) ); ( "inter_bias", Ptree.Tensor (zero_init 0 [| intermediate_size |] dtype) ); ("out_bias", Ptree.Tensor (zero_init 0 [| hidden_size |] dtype)); ] else [] in (* Layer norm parameters *) let attn_gamma = Rune.ones dtype [| hidden_size |] in let attn_beta = Rune.zeros dtype [| hidden_size |] in let ffn_gamma = Rune.ones dtype [| hidden_size |] in let ffn_beta = Rune.zeros dtype [| hidden_size |] in Ptree.record_of ([ ("q_weight", Ptree.Tensor q_weight); ("k_weight", Ptree.Tensor k_weight); ("v_weight", Ptree.Tensor v_weight); ("attn_out_weight", Ptree.Tensor attn_out_weight); ("inter_weight", Ptree.Tensor inter_weight); ("out_weight", Ptree.Tensor out_weight); ("attn_gamma", Ptree.Tensor attn_gamma); ("attn_beta", Ptree.Tensor attn_beta); ("ffn_gamma", Ptree.Tensor ffn_gamma); ("ffn_beta", Ptree.Tensor ffn_beta); ] @ bias_params)); apply = (fun params ~training ?rngs -> match params with | Ptree.Record fields -> let get_weight name = match Ptree.Record.find_opt name fields with | Some (Ptree.Tensor t) -> t | _ -> failwith ("transformer_encoder_layer: missing " ^ name) in let get_bias_opt name = match Ptree.Record.find_opt name fields with | Some (Ptree.Tensor t) -> Some t | _ -> None in Ops.transformer_encoder_layer ~q_weight:(get_weight "q_weight") ~k_weight:(get_weight "k_weight") ~v_weight:(get_weight "v_weight") ~attn_out_weight:(get_weight "attn_out_weight") ~inter_weight:(get_weight "inter_weight") ~out_weight:(get_weight "out_weight") ?q_bias:(get_bias_opt "q_bias") ?k_bias:(get_bias_opt "k_bias") ?v_bias:(get_bias_opt "v_bias") ?attn_out_bias:(get_bias_opt "attn_out_bias") ?inter_bias:(get_bias_opt "inter_bias") ?out_bias:(get_bias_opt "out_bias") ~attn_gamma:(get_weight "attn_gamma") ~attn_beta:(get_weight "attn_beta") ~ffn_gamma:(get_weight "ffn_gamma") ~ffn_beta:(get_weight "ffn_beta") ~hidden_states ~training ?rngs ~hidden_size ~num_attention_heads ~intermediate_size ~hidden_dropout_prob ~attention_probs_dropout_prob ~layer_norm_eps ~hidden_act ~use_bias () | _ -> failwith "transformer_encoder_layer: invalid params"); } let transformer_encoder ~num_layers ~ ~num_attention_heads ~intermediate_size ?( = 0.1) ?(attention_probs_dropout_prob = 0.1) ?(layer_norm_eps = 1e-12) ?( = `gelu) ?(use_bias = true) () = let layers = List.init num_layers (fun _ -> transformer_encoder_layer ~hidden_size ~num_attention_heads ~intermediate_size ~hidden_dropout_prob ~attention_probs_dropout_prob ~layer_norm_eps ~hidden_act ~use_bias ()) in sequential layers (* Recurrent layers *) let rnn ~input_size ~ ?(return_sequences = false) ?(learned_init = false) () = { init = (fun ~rngs ~dtype -> let glorot = (Initializers.glorot_uniform ()).f in let keys = Rune.Rng.split ~n:2 rngs in let w_xh = glorot (Rune.Rng.to_int keys.(0)) [| input_size; hidden_size |] dtype in let w_hh = glorot (Rune.Rng.to_int keys.(1)) [| hidden_size; hidden_size |] dtype in let b = Rune.zeros dtype [| hidden_size |] in let base = [ ("w_xh", Ptree.Tensor w_xh); ("w_hh", Ptree.Tensor w_hh); ("b", Ptree.Tensor b); ] in let base = if learned_init then let h0 = Rune.zeros dtype [| hidden_size |] in base @ [ ("h0", Ptree.Tensor h0) ] else base in Ptree.record_of base); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Record fields -> let get name = match Ptree.Record.find_opt name fields with | Some (Tensor t) -> t | _ -> failwith ("rnn: missing " ^ name) in let w_xh = get "w_xh" and w_hh = get "w_hh" and b = get "b" in let batch, seq_len, _ = match Rune.shape x with | [| b; s; i |] -> (b, s, i) | _ -> failwith "rnn: expected [b; s; i]" in let dt = Rune.dtype x in let h_init = match Ptree.Record.find_opt "h0" fields with | Some (Tensor h0) -> Rune.reshape [| 1; hidden_size |] h0 |> Rune.expand [| batch; hidden_size |] | _ -> Rune.zeros dt [| batch; hidden_size |] in let h = ref h_init in let outputs = Array.make seq_len (Rune.zeros dt [| batch; hidden_size |]) in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let pre = Rune.add (Rune.matmul xt w_xh) (Rune.add (Rune.matmul !h w_hh) (Rune.reshape [| 1; hidden_size |] b)) in h := Rune.tanh pre done; if return_sequences then ( (* Fill outputs in second loop to keep simple shape reuse *) let h2 = ref h_init in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let pre = Rune.add (Rune.matmul xt w_xh) (Rune.add (Rune.matmul !h2 w_hh) (Rune.reshape [| 1; hidden_size |] b)) in h2 := Rune.tanh pre; outputs.(t) <- !h2 done; Rune.stack ~axis:1 (Array.to_list outputs)) else !h | _ -> failwith "rnn: invalid params"); } let gru ~input_size ~ ?(return_sequences = false) ?(learned_init = false) () = { init = (fun ~rngs ~dtype -> let glorot = (Initializers.glorot_uniform ()).f in let keys = Rune.Rng.split ~n:2 rngs in let w_ih = glorot (Rune.Rng.to_int keys.(0)) [| input_size; hidden_size * 3 |] dtype in let w_hh = glorot (Rune.Rng.to_int keys.(1)) [| hidden_size; hidden_size * 3 |] dtype in let b = Rune.zeros dtype [| hidden_size * 3 |] in let base = [ ("w_ih", Ptree.Tensor w_ih); ("w_hh", Ptree.Tensor w_hh); ("b", Ptree.Tensor b); ] in let base = if learned_init then let h0 = Rune.zeros dtype [| hidden_size |] in base @ [ ("h0", Ptree.Tensor h0) ] else base in Ptree.record_of base); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Record fields -> let get name = match Ptree.Record.find_opt name fields with | Some (Tensor t) -> t | _ -> failwith ("gru: missing " ^ name) in let w_ih = get "w_ih" and w_hh = get "w_hh" and b = get "b" in let batch, seq_len, _ = match Rune.shape x with | [| b; s; i |] -> (b, s, i) | _ -> failwith "gru: expected [b; s; i]" in let dt = Rune.dtype x in let h_init = match Ptree.Record.find_opt "h0" fields with | Some (Tensor h0) -> Rune.reshape [| 1; hidden_size |] h0 |> Rune.expand [| batch; hidden_size |] | _ -> Rune.zeros dt [| batch; hidden_size |] in let h = ref h_init in let outputs = Array.make seq_len (Rune.zeros dt [| batch; hidden_size |]) in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let gates = Rune.add (Rune.matmul xt w_ih) (Rune.add (Rune.matmul !h w_hh) (Rune.reshape [| 1; hidden_size * 3 |] b)) in let z = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] gates) in let r = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size, hidden_size * 2) ] gates) in let n = Rune.tanh (Rune.add (Rune.slice [ Rune.A; Rune.R (hidden_size * 2, hidden_size * 3) ] gates) (Rune.matmul (Rune.mul r !h) (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] w_hh))) in h := Rune.add (Rune.mul (Rune.sub (Rune.scalar dt 1.0) z) n) (Rune.mul z !h) done; if return_sequences then ( let h2 = ref h_init in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let gates = Rune.add (Rune.matmul xt w_ih) (Rune.add (Rune.matmul !h2 w_hh) (Rune.reshape [| 1; hidden_size * 3 |] b)) in let z = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] gates) in let r = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size, hidden_size * 2) ] gates) in let n = Rune.tanh (Rune.add (Rune.slice [ Rune.A; Rune.R (hidden_size * 2, hidden_size * 3) ] gates) (Rune.matmul (Rune.mul r !h2) (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] w_hh))) in h2 := Rune.add (Rune.mul (Rune.sub (Rune.scalar dt 1.0) z) n) (Rune.mul z !h2); outputs.(t) <- !h2 done; Rune.stack ~axis:1 (Array.to_list outputs)) else !h | _ -> failwith "gru: invalid params"); } let lstm ~input_size ~ ?(return_sequences = false) ?(learned_init = false) () = { init = (fun ~rngs ~dtype -> let glorot = (Initializers.glorot_uniform ()).f in let keys = Rune.Rng.split ~n:2 rngs in let w_ih = glorot (Rune.Rng.to_int keys.(0)) [| input_size; hidden_size * 4 |] dtype in let w_hh = glorot (Rune.Rng.to_int keys.(1)) [| hidden_size; hidden_size * 4 |] dtype in let b = Rune.zeros dtype [| hidden_size * 4 |] in let base = [ ("w_ih", Ptree.Tensor w_ih); ("w_hh", Ptree.Tensor w_hh); ("b", Ptree.Tensor b); ] in let base = if learned_init then let h0 = Rune.zeros dtype [| hidden_size |] in let c0 = Rune.zeros dtype [| hidden_size |] in base @ [ ("h0", Ptree.Tensor h0); ("c0", Ptree.Tensor c0) ] else base in Ptree.record_of base); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Record fields -> let get name = match Ptree.Record.find_opt name fields with | Some (Tensor t) -> t | _ -> failwith ("lstm: missing " ^ name) in let w_ih = get "w_ih" and w_hh = get "w_hh" and b = get "b" in let batch, seq_len, _ = match Rune.shape x with | [| b; s; i |] -> (b, s, i) | _ -> failwith "lstm: expected [b; s; i]" in let dt = Rune.dtype x in let h_init = match Ptree.Record.find_opt "h0" fields with | Some (Tensor h0) -> Rune.reshape [| 1; hidden_size |] h0 |> Rune.expand [| batch; hidden_size |] | _ -> Rune.zeros dt [| batch; hidden_size |] in let c_init = match Ptree.Record.find_opt "c0" fields with | Some (Tensor c0) -> Rune.reshape [| 1; hidden_size |] c0 |> Rune.expand [| batch; hidden_size |] | _ -> Rune.zeros dt [| batch; hidden_size |] in let h = ref h_init in let c = ref c_init in let outputs = Array.make seq_len (Rune.zeros dt [| batch; hidden_size |]) in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let gates = Rune.add (Rune.matmul xt w_ih) (Rune.add (Rune.matmul !h w_hh) (Rune.reshape [| 1; hidden_size * 4 |] b)) in let i = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] gates) in let f = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size, hidden_size * 2) ] gates) in let g = Rune.tanh (Rune.slice [ Rune.A; Rune.R (hidden_size * 2, hidden_size * 3) ] gates) in let o = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size * 3, hidden_size * 4) ] gates) in c := Rune.add (Rune.mul f !c) (Rune.mul i g); h := Rune.mul o (Rune.tanh !c) done; if return_sequences then ( let h2 = ref h_init in let c2 = ref c_init in for t = 0 to seq_len - 1 do let xt = Rune.slice [ Rune.A; Rune.I t; Rune.A ] x in let gates = Rune.add (Rune.matmul xt w_ih) (Rune.add (Rune.matmul !h2 w_hh) (Rune.reshape [| 1; hidden_size * 4 |] b)) in let i = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (0, hidden_size) ] gates) in let f = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size, hidden_size * 2) ] gates) in let g = Rune.tanh (Rune.slice [ Rune.A; Rune.R (hidden_size * 2, hidden_size * 3) ] gates) in let o = Rune.sigmoid (Rune.slice [ Rune.A; Rune.R (hidden_size * 3, hidden_size * 4) ] gates) in c2 := Rune.add (Rune.mul f !c2) (Rune.mul i g); h2 := Rune.mul o (Rune.tanh !c2); outputs.(t) <- !h2 done; Rune.stack ~axis:1 (Array.to_list outputs)) else !h | _ -> failwith "lstm: invalid params"); } let positional_embedding_learned ~max_len ~embed_dim () = { init = (fun ~rngs ~dtype -> let initf = (Initializers.normal_range ~mean:0.0 ~stddev:0.02 ()).f in let key = (Rune.Rng.split rngs).(0) in let table = initf (Rune.Rng.to_int key) [| max_len; embed_dim |] dtype in Ptree.Tensor table); apply = (fun params ~training:_ ?rngs:_ x -> match params with | Tensor table -> let b, s, _ = match Rune.shape x with | [| b; s; e |] -> (b, s, e) | _ -> failwith "positional_embedding: expected [b; s; e]" in let pos = Rune.arange Rune.int32 0 s 1 in let pos = Rune.reshape [| 1; s |] pos |> Rune.expand [| b; s |] |> Rune.contiguous in let pos_e = Ops.embedding ~embedding:table ~embed_dim ~scale:false pos in Rune.add x pos_e | _ -> failwith "positional_embedding: invalid params"); } let positional_encoding_sinusoidal_table ~max_len ~embed_dim ~dtype = let dt = dtype in let d2 = embed_dim / 2 in let position = Rune.arange Rune.int32 0 max_len 1 |> Rune.cast dt |> Rune.reshape [| max_len; 1 |] in let j = Rune.arange Rune.int32 0 d2 1 |> Rune.cast dt |> Rune.reshape [| 1; d2 |] in let exponent = Rune.div (Rune.mul (Rune.scalar dt 2.0) j) (Rune.scalar dt (float_of_int embed_dim)) in let angle_rate = Rune.pow (Rune.scalar dt 10000.0) exponent in let angle = Rune.div position angle_rate in let sin_term = Rune.sin angle in let cos_term = Rune.cos angle in let sin_e = Rune.expand_dims [ 2 ] sin_term in let cos_e = Rune.expand_dims [ 2 ] cos_term in let stacked = Rune.stack ~axis:2 [ sin_e; cos_e ] in (* [L; d2; 2] *) Rune.reshape [| max_len; d2 * 2 |] stacked let transformer_decoder_block ~embed_dim ~num_heads ~ ?(dropout = 0.0) () = let attn = multi_head_attention ~embed_dim ~num_heads () in let ln1 = layer_norm ~dim:embed_dim () in let ln2 = layer_norm ~dim:embed_dim () in let ff = sequential [ linear ~in_features:embed_dim ~out_features:mlp_hidden (); gelu (); linear ~in_features:mlp_hidden ~out_features:embed_dim (); ] in { init = (fun ~rngs ~dtype -> let ks = Rune.Rng.split ~n:4 rngs in Ptree.record_of [ ("attn", attn.init ~rngs:ks.(0) ~dtype); ("ln1", ln1.init ~rngs:ks.(1) ~dtype); ("ln2", ln2.init ~rngs:ks.(2) ~dtype); ("ff", ff.init ~rngs:ks.(3) ~dtype); ]); apply = (fun params ~training ?rngs x -> match params with | Record fields -> let get name = match Ptree.Record.find_opt name fields with | Some p -> p | None -> failwith ("decoder_block: missing " ^ name) in let p_attn = get "attn" and p_ln1 = get "ln1" and p_ln2 = get "ln2" and p_ff = get "ff" in let x_norm = ln1.apply p_ln1 ~training ?rngs x in (* Extract weights from attn params to call Ops with is_causal *) let attn_out = match p_attn with | Record f -> let getw n = match Ptree.Record.find_opt n f with | Some (Tensor t) -> t | _ -> failwith ("attn param " ^ n) in let q = getw "q_proj" and k = getw "k_proj" and v = getw "v_proj" and o = getw "out_proj" in let head_dim = embed_dim / num_heads in let effective_dropout = if training then dropout else 0.0 in let out, _ = Ops.multi_head_attention ~q_proj_w:q ~k_proj_w:k ~v_proj_w:v ~out_proj_w:o ~query:x_norm ~is_causal:true ~embed_dim ~num_heads ~num_kv_heads:num_heads ~head_dim ~dropout:effective_dropout ?rngs ~bias:false ~add_bias_kv:false ~scale:1.0 () in out | _ -> failwith "attn params" in let x = Rune.add x attn_out in let x2 = ln2.apply p_ln2 ~training ?rngs x in let ff_out = ff.apply p_ff ~training ?rngs x2 in Rune.add x ff_out | _ -> failwith "decoder_block: invalid params"); } let transformer_decoder ~num_layers ~embed_dim ~num_heads ~ ?(dropout = 0.0) () = let layers = List.init num_layers (fun _ -> transformer_decoder_block ~embed_dim ~num_heads ~mlp_hidden ~dropout ()) in sequential layers
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>