package kaun
Flax-inspired neural network library for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha1.tbz
sha256=8e277ed56615d388bc69c4333e43d1acd112b5f2d5d352e2453aef223ff59867
sha512=369eda6df6b84b08f92c8957954d107058fb8d3d8374082e074b56f3a139351b3ae6e3a99f2d4a4a2930dd950fd609593467e502368a13ad6217b571382da28c
doc/src/kaun/activations.ml.html
Source file activations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
open Rune (* Standard Activations *) let relu = relu let relu6 = relu6 let sigmoid = sigmoid let tanh = tanh let softmax = softmax (* Modern Activations *) let gelu = gelu let silu = silu let swish = silu (* Alias for silu *) let mish = mish (* Parametric Activations *) let leaky_relu = leaky_relu let elu = elu let selu = selu let prelu alpha x = (* max(0, x) + alpha * min(0, x) *) let zero = zeros_like x in add (maximum zero x) (mul alpha (minimum zero x)) (* Gated Linear Units (GLUs) *) let glu x gate = (* x * sigmoid(gate) *) mul x (sigmoid gate) let swiglu x = (* x * silu(x) *) mul x (silu x) let geglu x gate = (* x * gelu(gate) *) mul x (gelu gate) let reglu x gate = (* x * relu(gate) *) mul x (relu gate) (* Other Activations *) let softplus = softplus let softsign = softsign let hard_sigmoid = hard_sigmoid let hard_tanh = hard_tanh let hard_swish x = (* x * relu6(x + 3) / 6 - Not in Rune, but hard_silu is *) hard_silu x (* hard_silu is essentially the same as hard_swish *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>