package kaun
Flax-inspired neural network library for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha1.tbz
sha256=8e277ed56615d388bc69c4333e43d1acd112b5f2d5d352e2453aef223ff59867
sha512=369eda6df6b84b08f92c8957954d107058fb8d3d8374082e074b56f3a139351b3ae6e3a99f2d4a4a2930dd950fd609593467e502368a13ad6217b571382da28c
doc/src/kaun.models/bert.ml.html
Source file bert.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
open Rune (* Configuration *) type config = { vocab_size : int; hidden_size : int; num_hidden_layers : int; num_attention_heads : int; intermediate_size : int; hidden_act : [ `gelu | `relu | `swish | `gelu_new ]; hidden_dropout_prob : float; attention_probs_dropout_prob : float; max_position_embeddings : int; type_vocab_size : int; layer_norm_eps : float; pad_token_id : int; position_embedding_type : [ `absolute | `relative ]; use_cache : bool; classifier_dropout : float option; } let default_config = { vocab_size = 30522; hidden_size = 768; num_hidden_layers = 12; num_attention_heads = 12; intermediate_size = 3072; hidden_act = `gelu; hidden_dropout_prob = 0.1; attention_probs_dropout_prob = 0.1; max_position_embeddings = 512; type_vocab_size = 2; layer_norm_eps = 1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } let bert_base_uncased = default_config let bert_large_uncased = { default_config with hidden_size = 1024; num_hidden_layers = 24; num_attention_heads = 16; intermediate_size = 4096; } let bert_base_cased = default_config (* Same architecture, different tokenizer *) let bert_base_multilingual = { default_config with vocab_size = 105879; (* Larger vocabulary for multilingual *) } (* Move inputs type definition before Tokenizer *) type inputs = { input_ids : (int32, int32_elt) Rune.t; attention_mask : (int32, int32_elt) Rune.t; token_type_ids : (int32, int32_elt) Rune.t option; position_ids : (int32, int32_elt) Rune.t option; } module Tokenizer = struct (* Simple BERT WordPiece tokenizer implementation *) type t = { vocab : (string, int) Hashtbl.t; inv_vocab : (int, string) Hashtbl.t; unk_token_id : int; cls_token_id : int; sep_token_id : int; pad_token_id : int; max_input_chars_per_word : int; } let download_vocab_file model_id = (* Download vocab file from HuggingFace if not present *) let cache_dir = match Sys.getenv_opt "XDG_CACHE_HOME" with | Some dir -> dir | None -> ( match Sys.getenv_opt "HOME" with | Some home -> Filename.concat home ".cache" | None -> "/tmp/.cache") in let kaun_cache = Filename.concat cache_dir "kaun" in let vocab_cache = Filename.concat kaun_cache "vocab" in let vocab_file = Filename.concat vocab_cache (model_id ^ "-vocab.txt") in (* Create cache directory if it doesn't exist *) if not (Sys.file_exists vocab_cache) then Sys.command (Printf.sprintf "mkdir -p %s" vocab_cache) |> ignore; (* Download if file doesn't exist *) if not (Sys.file_exists vocab_file) then ( Printf.printf "Downloading vocab file for %s...\n%!" model_id; let url = Printf.sprintf "https://huggingface.co/%s/resolve/main/vocab.txt" model_id in let cmd = Printf.sprintf "curl -L -o %s %s 2>/dev/null || wget -O %s %s 2>/dev/null" vocab_file url vocab_file url in let exit_code = Sys.command cmd in if exit_code <> 0 then failwith (Printf.sprintf "Failed to download vocab file for %s" model_id)); vocab_file let load_vocab vocab_file = let vocab = Hashtbl.create 30000 in let inv_vocab = Hashtbl.create 30000 in let ic = open_in vocab_file in let idx = ref 0 in (try while true do let line = input_line ic in let token = String.trim line in if String.length token > 0 then ( Hashtbl.add vocab token !idx; Hashtbl.add inv_vocab !idx token; incr idx) done with End_of_file -> ()); close_in ic; (vocab, inv_vocab) let create ?vocab_file ?model_id () = (* Either provide a vocab_file path or a model_id to download from *) let vocab_file = match (vocab_file, model_id) with | Some file, _ -> file | None, Some id -> download_vocab_file id | None, None -> download_vocab_file "bert-base-uncased" (* Default *) in let vocab, inv_vocab = load_vocab vocab_file in { vocab; inv_vocab; unk_token_id = 100; (* [UNK] is at index 100 in BERT vocab *) cls_token_id = 101; (* [CLS] *) sep_token_id = 102; (* [SEP] *) pad_token_id = 0; (* [PAD] *) max_input_chars_per_word = 100; } (* Basic tokenization: lowercase and split on whitespace/punctuation *) let basic_tokenize text = let text = String.lowercase_ascii text in let tokens = ref [] in let current = Buffer.create 16 in String.iter (fun c -> match c with | 'a' .. 'z' | '0' .. '9' -> Buffer.add_char current c | _ -> if Buffer.length current > 0 then ( tokens := Buffer.contents current :: !tokens; Buffer.clear current); (* Don't add whitespace as tokens *) if c <> ' ' && c <> '\t' && c <> '\n' && c <> '\r' then tokens := String.make 1 c :: !tokens) text; if Buffer.length current > 0 then tokens := Buffer.contents current :: !tokens; List.rev !tokens (* WordPiece tokenization on a single word *) let wordpiece_tokenize_word t word = let n = String.length word in if n > t.max_input_chars_per_word then [ t.unk_token_id ] else let output = ref [] in let start = ref 0 in while !start < n do let end_idx = ref n in let found = ref false in while !start < !end_idx && not !found do let substr = if !start > 0 then "##" ^ String.sub word !start (!end_idx - !start) else String.sub word !start (!end_idx - !start) in match Hashtbl.find_opt t.vocab substr with | Some token_id -> output := token_id :: !output; found := true; start := !end_idx | None -> decr end_idx done; if not !found then ( output := [ t.unk_token_id ]; start := n (* Exit loop *)) done; List.rev !output let encode_to_array t text = let basic_tokens = basic_tokenize text in let token_ids = ref [ t.cls_token_id ] in List.iter (fun word -> let word_tokens = wordpiece_tokenize_word t word in token_ids := !token_ids @ word_tokens) basic_tokens; token_ids := !token_ids @ [ t.sep_token_id ]; Array.of_list !token_ids let encode t text = let token_ids = encode_to_array t text in let seq_len = Array.length token_ids in (* Convert to tensors *) let input_ids = Rune.create Int32 [| 1; seq_len |] (Array.map Int32.of_int token_ids) in let attention_mask = Rune.ones Int32 [| 1; seq_len |] in (* Return inputs record *) { input_ids; attention_mask; token_type_ids = None; position_ids = None } let encode_batch t ?(max_length = 512) ?(padding = true) texts = let encoded = List.map (encode_to_array t) texts in (* Find max length or use specified max_length *) let actual_max = if padding then max_length else List.fold_left (fun acc arr -> Int.max acc (Array.length arr)) 0 encoded in (* Pad sequences *) let padded = List.map (fun arr -> let len = Array.length arr in if len >= actual_max then Array.sub arr 0 actual_max else Array.append arr (Array.make (actual_max - len) t.pad_token_id)) encoded in (* Convert to tensor *) let batch_size = List.length padded in let flat_data = Array.concat padded in (* Create Nx tensor with int values *) let nx_tensor = let data = Array.map Int32.of_int flat_data in Nx.create Int32 [| batch_size; max_length |] data in (* Convert to Rune tensor *) Rune.of_nx nx_tensor let decode t token_ids = let tokens = ref [] in Array.iter (fun id -> if id <> t.cls_token_id && id <> t.sep_token_id && id <> t.pad_token_id then match Hashtbl.find_opt t.inv_vocab id with | Some token -> (* Remove ## prefix for subword tokens *) let token = if String.length token > 2 && String.sub token 0 2 = "##" then String.sub token 2 (String.length token - 2) else token ^ " " (* Add space after whole words *) in tokens := token :: !tokens | None -> ()) token_ids; String.concat "" (List.rev !tokens) |> String.trim let create_wordpiece ?vocab_file ?model_id () = create ?vocab_file ?model_id () end let embeddings ~config () = let open Kaun.Layer in (* BERT embeddings: token + position + token_type *) (* We'll create a custom module that combines them *) let token_embeddings = embedding ~vocab_size:config.vocab_size ~embed_dim:config.hidden_size () in let position_embeddings = embedding ~vocab_size:config.max_position_embeddings ~embed_dim:config.hidden_size () in let token_type_embeddings = embedding ~vocab_size:config.type_vocab_size ~embed_dim:config.hidden_size () in let layer_norm = layer_norm ~dim:config.hidden_size ~eps:config.layer_norm_eps () in let dropout = dropout ~rate:config.hidden_dropout_prob () in (* Custom module that applies all embeddings and sums them *) { Kaun.init = (fun ~rngs ~dtype -> let keys = Rune.Rng.split ~n:5 rngs in Kaun.Ptree.record_of [ ("token_embeddings", token_embeddings.init ~rngs:keys.(0) ~dtype); ( "position_embeddings", position_embeddings.init ~rngs:keys.(1) ~dtype ); ( "token_type_embeddings", token_type_embeddings.init ~rngs:keys.(2) ~dtype ); ("layer_norm", layer_norm.init ~rngs:keys.(3) ~dtype); ("dropout", dropout.init ~rngs:keys.(4) ~dtype); ]); Kaun.apply = (fun params ~training ?rngs x -> (* x is expected to be float tensor for compatibility with Kaun modules *) (* Cast back to int32 for embedding lookups *) let input_ids = Rune.cast Rune.int32 x in match params with | Kaun.Ptree.Record fields -> (* Get each embedding layer's params *) let get_params name = match Kaun.Ptree.Record.find_opt name fields with | Some p -> p | None -> failwith ("Embeddings: missing " ^ name) in (* Manually perform embedding lookups since Module.apply expects float tensors *) (* Extract embedding tables from params *) let get_embedding_table name = match get_params name with | Tensor t -> t | _ -> failwith ("Expected tensor for " ^ name) in let token_embeddings_table = get_embedding_table "token_embeddings" in let position_embeddings_table = get_embedding_table "position_embeddings" in let token_type_embeddings_table = get_embedding_table "token_type_embeddings" in (* Perform embedding lookups using Rune.take for differentiability *) let lookup_embeddings embedding_table indices = let batch_size = (Rune.shape indices).(0) in let seq_len = (Rune.shape indices).(1) in let embed_dim = (Rune.shape embedding_table).(1) in (* Flatten indices for take operation *) let indices_flat = Rune.reshape [| batch_size * seq_len |] indices in (* Use take to gather embeddings *) let gathered = Rune.take ~axis:0 indices_flat embedding_table in (* Reshape to [batch_size, seq_len, embed_dim] *) Rune.reshape [| batch_size; seq_len; embed_dim |] gathered in (* Apply token embeddings *) let token_embeds = lookup_embeddings token_embeddings_table input_ids in (* Create position ids if not provided: [0, 1, 2, ..., seq_len-1] *) let seq_len = (Rune.shape input_ids).(Array.length (Rune.shape input_ids) - 1) in let batch_size = (Rune.shape input_ids).(0) in let position_ids = let pos_ids = Rune.zeros Rune.int32 [| batch_size; seq_len |] in for b = 0 to batch_size - 1 do for s = 0 to seq_len - 1 do Rune.set [ b; s ] pos_ids (Rune.scalar Rune.int32 (Int32.of_int s)) done done; pos_ids in let position_embeds = lookup_embeddings position_embeddings_table position_ids in (* Create token type ids (all zeros for single sentence) *) let token_type_ids = Rune.zeros Rune.int32 (Rune.shape input_ids) in let token_type_embeds = lookup_embeddings token_type_embeddings_table token_type_ids in (* Sum all embeddings *) let embeddings = Rune.add token_embeds (Rune.add position_embeds token_type_embeds) in (* Apply layer norm and dropout *) let embeddings = layer_norm.apply (get_params "layer_norm") ~training ?rngs embeddings in let embeddings = dropout.apply (get_params "dropout") ~training ?rngs embeddings in embeddings | _ -> failwith "Embeddings: invalid params"); } let pooler ~ () = (* Create a module that extracts CLS token and applies dense + tanh *) { Kaun.init = (fun ~rngs ~dtype -> (* Initialize dense layer weights *) let key = Rune.Rng.to_int rngs in let init_fn = (Kaun.Initializers.normal ~stddev:0.02 ()).f in let dense_weight = init_fn key [| hidden_size; hidden_size |] dtype in let dense_bias = Rune.zeros dtype [| hidden_size |] in Kaun.Ptree.( Record (Record.of_seq @@ List.to_seq [ ("dense_weight", Tensor dense_weight); ("dense_bias", Tensor dense_bias); ]))); Kaun.apply = (fun params ~training:_ ?rngs:_ x -> let open Rune in (* Extract CLS token: hidden_states[:, 0, :] *) let cls_token = slice [ A; I 0; A ] x in (* Apply dense layer *) let dense_weight = match params with | Record fields -> ( match Kaun.Ptree.Record.find_opt "dense_weight" fields with | Some (Tensor t) -> t | _ -> failwith "Pooler: missing dense_weight") | _ -> failwith "Pooler: invalid params" in let dense_bias = match params with | Record fields -> ( match Kaun.Ptree.Record.find_opt "dense_bias" fields with | Some (Tensor t) -> t | _ -> failwith "Pooler: missing dense_bias") | _ -> failwith "Pooler: invalid params" in let pooled = add (matmul cls_token dense_weight) dense_bias in (* Apply tanh activation *) tanh pooled); } (* Main Model *) type 'a bert = { model : Kaun.Layer.module_; params : 'a Kaun.Ptree.t; config : config; dtype : (float, 'a) Rune.dtype; } type 'a output = { last_hidden_state : (float, 'a) Rune.t; pooler_output : (float, 'a) Rune.t option; hidden_states : (float, 'a) Rune.t list option; attentions : (float, 'a) Rune.t list option; } let create_bert_layers ~config ~add_pooling_layer = (* Build BERT as a sequential model *) let layers = [ (* Use the proper BERT embeddings module that combines token + position + segment *) embeddings ~config (); (* Use the transformer encoder from Kaun *) Kaun.Layer.transformer_encoder ~num_layers:config.num_hidden_layers ~hidden_size:config.hidden_size ~num_attention_heads:config.num_attention_heads ~intermediate_size:config.intermediate_size ~hidden_dropout_prob:config.hidden_dropout_prob ~attention_probs_dropout_prob:config.attention_probs_dropout_prob ~layer_norm_eps:config.layer_norm_eps ~hidden_act: (match config.hidden_act with | `gelu | `gelu_new -> `gelu | `relu -> `relu | `swish -> `swish) ~use_bias:true (* BERT uses bias *) (); ] @ (* Optional pooler for [CLS] token *) if add_pooling_layer then [ pooler ~hidden_size:config.hidden_size () ] else [] in layers let create ?(config = default_config) ?(add_pooling_layer = true) () = let open Kaun.Layer in sequential (create_bert_layers ~config ~add_pooling_layer) let from_pretrained ?(model_id = "bert-base-uncased") ?revision ?cache_config ~dtype () = (* Load config and weights from HuggingFace, but handle BERT-specific conversion here *) let cache_config = Option.value cache_config ~default:Kaun_huggingface.Config.default in let revision = Option.value revision ~default:Kaun_huggingface.Latest in (* Load config JSON from HuggingFace *) let config_json = match Kaun_huggingface.load_config ~config:cache_config ~revision ~model_id () with | Cached json | Downloaded (json, _) -> json in (* Parse BERT-specific config *) let bert_config = let open Yojson.Safe.Util in { vocab_size = config_json |> member "vocab_size" |> to_int; hidden_size = config_json |> member "hidden_size" |> to_int; num_hidden_layers = config_json |> member "num_hidden_layers" |> to_int; num_attention_heads = config_json |> member "num_attention_heads" |> to_int; intermediate_size = config_json |> member "intermediate_size" |> to_int; hidden_act = (match config_json |> member "hidden_act" |> to_string_option with | Some "gelu" | Some "gelu_new" -> `gelu | Some "relu" -> `relu | Some "swish" | Some "silu" -> `swish | _ -> `gelu); hidden_dropout_prob = config_json |> member "hidden_dropout_prob" |> to_float_option |> Option.value ~default:0.1; attention_probs_dropout_prob = config_json |> member "attention_probs_dropout_prob" |> to_float_option |> Option.value ~default:0.1; max_position_embeddings = config_json |> member "max_position_embeddings" |> to_int; type_vocab_size = config_json |> member "type_vocab_size" |> to_int_option |> Option.value ~default:2; layer_norm_eps = config_json |> member "layer_norm_eps" |> to_float_option |> Option.value ~default:1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } in (* Load weights using HuggingFace infrastructure *) let hf_params = Kaun_huggingface.from_pretrained ~config:cache_config ~revision ~model_id ~dtype () in (* Map HuggingFace parameter names to our expected structure *) let map_huggingface_to_kaun hf_params = (* First, flatten the nested HuggingFace structure to get dot-separated names *) let rec flatten_ptree prefix tree = match tree with | Kaun.Ptree.Tensor t -> [ (prefix, t) ] | Kaun.Ptree.List lst -> List.concat (List.mapi (fun i subtree -> flatten_ptree (prefix ^ "." ^ string_of_int i) subtree) lst) | Kaun.Ptree.Record fields -> Kaun.Ptree.Record.fold (fun name subtree acc -> let new_prefix = if prefix = "" then name else prefix ^ "." ^ name in flatten_ptree new_prefix subtree @ acc) fields [] in (* Flatten the HuggingFace parameters *) let flat_params = flatten_ptree "" hf_params in (* Map flat HF names to Kaun sequential structure *) let embeddings_params = ref Kaun.Ptree.Record.empty in let encoder_layers = ref [] in let pooler_params = ref Kaun.Ptree.Record.empty in List.iter (fun (hf_name, tensor) -> (* Strip "bert." prefix if present *) let name = if String.starts_with ~prefix:"bert." hf_name then String.sub hf_name 5 (String.length hf_name - 5) else hf_name in (* Map based on the name structure *) match name with (* Embeddings *) | s when String.starts_with ~prefix:"embeddings.word_embeddings.weight" s -> embeddings_params := Kaun.Ptree.Record.add "token_embeddings" (Kaun.Ptree.Tensor tensor) !embeddings_params | s when String.starts_with ~prefix:"embeddings.position_embeddings.weight" s -> embeddings_params := Kaun.Ptree.Record.add "position_embeddings" (Kaun.Ptree.Tensor tensor) !embeddings_params | s when String.starts_with ~prefix:"embeddings.token_type_embeddings.weight" s -> embeddings_params := Kaun.Ptree.Record.add "token_type_embeddings" (Kaun.Ptree.Tensor tensor) !embeddings_params | s when String.starts_with ~prefix:"embeddings.LayerNorm" s -> let ln_params = match Kaun.Ptree.Record.find_opt "layer_norm" !embeddings_params with | Some (Kaun.Ptree.Record r) -> r | _ -> Kaun.Ptree.Record.empty in let field = if String.ends_with ~suffix:"weight" s then "gamma" else if String.ends_with ~suffix:"bias" s then "beta" else if String.ends_with ~suffix:"gamma" s then "gamma" else "beta" in let updated_ln = Kaun.Ptree.Record.add field (Kaun.Ptree.Tensor tensor) ln_params in embeddings_params := Kaun.Ptree.Record.add "layer_norm" (Kaun.Ptree.Record updated_ln) !embeddings_params (* Encoder layers *) | s when String.starts_with ~prefix:"encoder.layer." s -> ( let rest = String.sub s 14 (String.length s - 14) in match String.split_on_char '.' rest with | layer_idx :: params -> let layer_idx_int = int_of_string layer_idx in let param_name = String.concat "." params in (* Map HF param names to Kaun param names *) (* HuggingFace stores weights transposed, so we need to transpose them *) let kaun_param, needs_transpose = match param_name with | "attention.self.query.weight" -> ("q_weight", true) | "attention.self.key.weight" -> ("k_weight", true) | "attention.self.value.weight" -> ("v_weight", true) | "attention.output.dense.weight" -> ("attn_out_weight", true) | "intermediate.dense.weight" -> ("inter_weight", true) | "output.dense.weight" -> ("out_weight", true) | "attention.self.query.bias" -> ("q_bias", false) | "attention.self.key.bias" -> ("k_bias", false) | "attention.self.value.bias" -> ("v_bias", false) | "attention.output.dense.bias" -> ("attn_out_bias", false) | "intermediate.dense.bias" -> ("inter_bias", false) | "output.dense.bias" -> ("out_bias", false) | "attention.output.LayerNorm.weight" -> ("attn_gamma", false) | "attention.output.LayerNorm.bias" -> ("attn_beta", false) | "output.LayerNorm.weight" -> ("ffn_gamma", false) | "output.LayerNorm.bias" -> ("ffn_beta", false) | "attention.output.LayerNorm.gamma" -> ("attn_gamma", false) | "attention.output.LayerNorm.beta" -> ("attn_beta", false) | "output.LayerNorm.gamma" -> ("ffn_gamma", false) | "output.LayerNorm.beta" -> ("ffn_beta", false) | _ -> (param_name, false) in (* Ensure we have enough layers *) while List.length !encoder_layers <= layer_idx_int do encoder_layers := !encoder_layers @ [ ref Kaun.Ptree.Record.empty ] done; (* Add param to the appropriate layer *) let layer_params = List.nth !encoder_layers layer_idx_int in (* Transpose weight matrices if needed (HuggingFace stores them transposed) *) let final_tensor = if needs_transpose then Rune.transpose tensor ~axes:[ 1; 0 ] else tensor in layer_params := Kaun.Ptree.Record.add kaun_param (Kaun.Ptree.Tensor final_tensor) !layer_params | _ -> ()) (* Pooler *) | s when String.starts_with ~prefix:"pooler.dense.weight" s -> (* Transpose the pooler weight too (HuggingFace stores it transposed) *) let transposed_tensor = Rune.transpose tensor ~axes:[ 1; 0 ] in pooler_params := Kaun.Ptree.Record.add "dense_weight" (Kaun.Ptree.Tensor transposed_tensor) !pooler_params | s when String.starts_with ~prefix:"pooler.dense.bias" s -> pooler_params := Kaun.Ptree.Record.add "dense_bias" (Kaun.Ptree.Tensor tensor) !pooler_params | _ -> () (* Ignore other parameters *)) flat_params; (* Build the final sequential structure *) let encoder_list = List.map (fun r -> Kaun.Ptree.Record !r) !encoder_layers in (* Add dropout placeholder for embeddings *) embeddings_params := Kaun.Ptree.Record.add "dropout" (Kaun.Ptree.List []) !embeddings_params; (* Create a structure with both encoder params and pooler params *) (* The encoder params are for the sequential model *) let encoder_params = Kaun.Ptree.List [ Kaun.Ptree.Record !embeddings_params; Kaun.Ptree.List encoder_list ] in (* Return a record with both encoder and pooler params *) Kaun.Ptree.record_of [ ("encoder", encoder_params); ("pooler", Kaun.Ptree.Record !pooler_params); ] in let mapped_params = map_huggingface_to_kaun hf_params in (* Create the bert model structure without pooler since we handle it separately *) let model = create ~config:bert_config ~add_pooling_layer:false () in { model; params = mapped_params; config = bert_config; dtype } let forward bert inputs ?(training = false) ?( = false) ?(output_attentions = false) () = let { model; params; _ } = bert in let { input_ids; attention_mask; token_type_ids; position_ids = _ } = inputs in (* BERT forward pass using the Kaun model properly *) let open Rune in (* Get batch size and seq length *) let input_shape = shape input_ids in let batch_size = input_shape.(0) in let seq_len = input_shape.(1) in (* Default token_type_ids to zeros if not provided *) let _token_type_ids = match token_type_ids with | Some ids -> ids | None -> zeros int32 [| batch_size; seq_len |] in (* TODO: Handle attention_mask properly when Kaun supports it *) let _ = attention_mask in (* Extract encoder and pooler params using path-based access *) let encoder_params = try Kaun.Ptree.get_by_path "encoder" params with Invalid_argument _ -> failwith "forward: missing encoder params" in let pooler_params = try Kaun.Ptree.get_by_path "pooler" params with Invalid_argument _ -> Kaun.Ptree.Record Kaun.Ptree.Record.empty in (* Convert input_ids to float for Kaun model *) let dtype_tensor = match Kaun.Ptree.flatten_with_paths encoder_params with | [] -> failwith "Empty encoder params" | (_, t) :: _ -> t in let target_dtype = dtype dtype_tensor in let float_input = cast target_dtype input_ids in (* Apply the model using Kaun - this handles embeddings and encoder layers *) (* The model should be created without pooler since we handle it separately *) let model_output = Kaun.apply model encoder_params ~training float_input in (* The model output is the encoder's last hidden state *) let = model_output in (* For output_hidden_states and output_attentions, we would need to modify the model architecture to return intermediate values. For now, return minimal info *) let = if output_hidden_states then Some [ last_hidden_state ] else None in let attentions = if output_attentions then None (* Our current Kaun encoder doesn't expose attention weights *) else None in (* Apply pooler if present in parameters *) let pooler_output = match pooler_params with | Kaun.Ptree.Record fields when Kaun.Ptree.Record.cardinal fields > 0 -> (* Get pooler weights using path access *) let pooler_weight = match Kaun.Ptree.get_by_path "dense_weight" pooler_params |> Kaun.Ptree.get_tensor with | Some t -> t | None -> failwith "Pooler: missing dense_weight" in let pooler_bias = match Kaun.Ptree.get_by_path "dense_bias" pooler_params |> Kaun.Ptree.get_tensor with | Some t -> t | None -> failwith "Pooler: missing dense_bias" in (* Extract CLS token from encoder output *) let cls_token = slice [ A; I 0; A ] last_hidden_state in (* Apply dense + tanh - weights are already in correct shape after loading *) let pooled = add (matmul cls_token pooler_weight) pooler_bias in Some (tanh pooled) | _ -> None in (* Return structured output *) { last_hidden_state; pooler_output; hidden_states; attentions } (* Task-Specific Heads *) module For_masked_lm = struct let create ?(config = default_config) () = let open Kaun.Layer in sequential [ (* BERT encoder *) create ~config ~add_pooling_layer:false (); (* MLM head: project back to vocabulary *) linear ~in_features:config.hidden_size ~out_features:config.hidden_size (); gelu (); layer_norm ~dim:config.hidden_size ~eps:config.layer_norm_eps (); linear ~in_features:config.hidden_size ~out_features:config.vocab_size (); ] let forward ~model ~params ~input_ids ?attention_mask:_ ?token_type_ids:_ ?labels ~training () = let open Rune in (* Get the dtype from params to maintain polymorphism *) let dtype_tensor = match Kaun.Ptree.flatten_with_paths params with | [] -> failwith "Empty params" | (_, t) :: _ -> t in let target_dtype = dtype dtype_tensor in let float_input = cast target_dtype input_ids in let logits = Kaun.apply model params ~training float_input in (* Compute loss if labels provided *) let loss = match labels with | Some labels -> (* Reshape for cross-entropy *) let batch_size = (shape logits).(0) in let seq_length = (shape logits).(1) in let vocab_size = (shape logits).(2) in let flat_logits = Rune.reshape [| batch_size * seq_length; vocab_size |] logits in let flat_labels = Rune.reshape [| batch_size * seq_length |] labels in Some (Kaun.Loss.softmax_cross_entropy_with_indices flat_logits flat_labels) | None -> None in (logits, loss) end module For_sequence_classification = struct let create ?(config = default_config) ~num_labels () = let open Kaun.Layer in sequential [ (* BERT encoder with pooler *) create ~config ~add_pooling_layer:true (); (* Classification head *) dropout ~rate: (Option.value config.classifier_dropout ~default:config.hidden_dropout_prob) (); linear ~in_features:config.hidden_size ~out_features:num_labels (); ] let forward ~model ~params ~input_ids ?attention_mask:_ ?token_type_ids:_ ?labels ~training () = let open Rune in (* Get the dtype from params to maintain polymorphism *) let dtype_tensor = match Kaun.Ptree.flatten_with_paths params with | [] -> failwith "Empty params" | (_, t) :: _ -> t in let target_dtype = dtype dtype_tensor in let float_input = cast target_dtype input_ids in let logits = Kaun.apply model params ~training float_input in (* Compute loss if labels provided *) let loss = match labels with | Some labels -> Some (Kaun.Loss.softmax_cross_entropy_with_indices logits labels) | None -> None in (logits, loss) end module For_token_classification = struct let create ?(config = default_config) ~num_labels () = let open Kaun.Layer in sequential [ (* BERT encoder without pooler *) create ~config ~add_pooling_layer:false (); (* Token classification head *) dropout ~rate:config.hidden_dropout_prob (); linear ~in_features:config.hidden_size ~out_features:num_labels (); ] let forward ~model ~params ~input_ids ?attention_mask:_ ?token_type_ids:_ ?labels ~training () = let open Rune in (* Get the dtype from params to maintain polymorphism *) let dtype_tensor = match Kaun.Ptree.flatten_with_paths params with | [] -> failwith "Empty params" | (_, t) :: _ -> t in let target_dtype = dtype dtype_tensor in let float_input = cast target_dtype input_ids in let logits = Kaun.apply model params ~training float_input in (* Compute loss if labels provided *) let loss = match labels with | Some labels -> (* Reshape for cross-entropy *) let batch_size = (shape logits).(0) in let seq_length = (shape logits).(1) in let num_labels = (shape logits).(2) in let flat_logits = Rune.reshape [| batch_size * seq_length; num_labels |] logits in let flat_labels = Rune.reshape [| batch_size * seq_length |] labels in Some (Kaun.Loss.softmax_cross_entropy_with_indices flat_logits flat_labels) | None -> None in (logits, loss) end (* BERT-specific configurations *) let parse_bert_config json = (* Parse BERT-specific configuration from HuggingFace JSON *) let open Yojson.Safe.Util in { vocab_size = json |> member "vocab_size" |> to_int; hidden_size = json |> member "hidden_size" |> to_int; num_hidden_layers = json |> member "num_hidden_layers" |> to_int; num_attention_heads = json |> member "num_attention_heads" |> to_int; intermediate_size = json |> member "intermediate_size" |> to_int; hidden_act = (match json |> member "hidden_act" |> to_string_option with | Some "gelu" | Some "gelu_new" -> `gelu | Some "relu" -> `relu | Some "swish" | Some "silu" -> `swish | _ -> `gelu); hidden_dropout_prob = json |> member "hidden_dropout_prob" |> to_float_option |> Option.value ~default:0.1; attention_probs_dropout_prob = json |> member "attention_probs_dropout_prob" |> to_float_option |> Option.value ~default:0.1; max_position_embeddings = json |> member "max_position_embeddings" |> to_int; type_vocab_size = json |> member "type_vocab_size" |> to_int_option |> Option.value ~default:2; layer_norm_eps = json |> member "layer_norm_eps" |> to_float_option |> Option.value ~default:1e-12; pad_token_id = 0; position_embedding_type = `absolute; use_cache = true; classifier_dropout = None; } (* Utilities *) let create_attention_mask (type a) ~(input_ids : (int32, int32_elt) Rune.t) ~pad_token_id ~(dtype : (float, a) dtype) : (float, a) Rune.t = (* Create mask where 1.0 for real tokens, 0.0 for padding *) let input_dtype = Rune.dtype input_ids in let pad_tensor = Rune.scalar input_dtype (Int32.of_int pad_token_id) in let mask = Rune.not_equal input_ids pad_tensor in (* Cast to the requested float dtype *) Rune.cast dtype mask let get_embeddings ~model:_ ~params:_ ~input_ids:_ ?attention_mask:_ ~layer_index:_ () = (* Would extract embeddings from specific layer *) failwith "get_embeddings not fully implemented" let num_parameters params = let tensors = Kaun.Ptree.flatten_with_paths params in List.fold_left (fun acc (_, t) -> acc + Array.fold_left ( * ) 1 (Rune.shape t)) 0 tensors let parameter_stats params = let total_params = num_parameters params in let total_bytes = total_params * 4 in (* Assuming float32 *) Printf.sprintf "BERT parameters: %d (%.2f MB)" total_params (float_of_int total_bytes /. 1024. /. 1024.) (* Common BERT model configurations *) let load_bert_base_uncased ~dtype () = from_pretrained ~model_id:"bert-base-uncased" ~dtype () let load_bert_large_uncased ~dtype () = from_pretrained ~model_id:"bert-large-uncased" ~dtype () let load_bert_base_cased ~dtype () = from_pretrained ~model_id:"bert-base-cased" ~dtype () let load_bert_base_multilingual_cased ~dtype () = from_pretrained ~model_id:"bert-base-multilingual-cased" ~dtype ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>