package frama-c

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val basename : Frama_c_kernel.Cil_types.varinfo -> string

Trims the original name

type logic_lemma = {
  1. lem_name : string;
  2. lem_position : Frama_c_kernel.Filepath.position;
  3. lem_types : string list;
  4. lem_labels : Frama_c_kernel.Cil_types.logic_label list;
  5. lem_predicate : Frama_c_kernel.Cil_types.toplevel_predicate;
  6. lem_depends : logic_lemma list;
    (*

    in reverse order

    *)
  7. lem_attrs : Frama_c_kernel.Cil_types.attributes;
}
type axiomatic = {
  1. ax_name : string;
  2. ax_position : Frama_c_kernel.Filepath.position;
  3. ax_property : Frama_c_kernel.Property.t;
  4. mutable ax_types : Frama_c_kernel.Cil_types.logic_type_info list;
  5. mutable ax_logics : Frama_c_kernel.Cil_types.logic_info list;
  6. mutable ax_lemmas : logic_lemma list;
  7. mutable ax_reads : Frama_c_kernel.Cil_datatype.Varinfo.Set.t;
}
type logic_section =
  1. | Toplevel of int
  2. | Axiomatic of axiomatic
val compute : unit -> unit

To force computation

val iter_lemmas : (logic_lemma -> unit) -> unit
val fold_lemmas : (logic_lemma -> 'a -> 'a) -> 'a -> 'a
val logic_lemma : string -> logic_lemma
val axiomatic : string -> axiomatic
val section_of_lemma : string -> logic_section
val proof_context : unit -> logic_lemma list

Lemmas that are not in an axiomatic.

val is_recursive : Frama_c_kernel.Cil_types.logic_info -> bool
val get_induction_labels : Frama_c_kernel.Cil_types.logic_info -> string -> Wp__.Clabels.LabelSet.t Wp__.Clabels.LabelMap.t

Given an inductive phi{...A...}. Whenever in case C{...B...} we have a call to phi{...B...}, then A belongs to (induction phi C).[B].

val get_name : Frama_c_kernel.Cil_types.logic_info -> string
val pp_profile : Stdlib.Format.formatter -> Frama_c_kernel.Cil_types.logic_info -> unit
val dump : unit -> unit

Print on output

OCaml

Innovation. Community. Security.