package frama-c

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Common Types and Signatures

General Definitions

type 'a sequence = {
  1. pre : 'a;
  2. post : 'a;
}
type 'a binder = {
  1. bind : 'b 'c. 'a -> ('b -> 'c) -> 'b -> 'c;
}
type equation =
  1. | Set of Lang.F.term * Lang.F.term
    (*

    Set(a,b) is a := b.

    *)
  2. | Assert of Lang.F.pred

Oriented equality or arbitrary relation

type acs =
  1. | RW
    (*

    Read-Write Access

    *)
  2. | RD
    (*

    Read-Only Access

    *)
  3. | OBJ
    (*

    Valid Object Pointer

    *)

Access conditions

type 'a value =
  1. | Val of Lang.F.term
  2. | Loc of 'a

Abstract location or concrete value

type 'a rloc =
  1. | Rloc of Ctypes.c_object * 'a
  2. | Rrange of 'a * Ctypes.c_object * Lang.F.term option * Lang.F.term option

Contiguous set of locations

type 'a sloc =
  1. | Sloc of 'a
  2. | Sarray of 'a * Ctypes.c_object * int
    (*

    full sized range (optimized assigns)

    *)
  3. | Srange of 'a * Ctypes.c_object * Lang.F.term option * Lang.F.term option
  4. | Sdescr of Lang.F.var list * 'a * Lang.F.pred

Structured set of locations

type 'a region = (Ctypes.c_object * 'a sloc) list

Typed set of locations

type 'a logic =
  1. | Vexp of Lang.F.term
  2. | Vloc of 'a
  3. | Lset of 'a sloc list

Logical values, locations, or sets of

type scope =
  1. | Enter
  2. | Leave

Scope management for locals and formals

type 'a result =
  1. | R_loc of 'a
  2. | R_var of Lang.F.var

Container for the returned value of a function

type polarity = [
  1. | `Positive
  2. | `Negative
  3. | `NoPolarity
]

Polarity of predicate compilation

type frame = string * Definitions.trigger list * Lang.F.pred list * Lang.F.term * Lang.F.term

Frame Conditions. Consider a function phi(m) over memory m, we want memories m1,m2 and condition p such that p(m1,m2) -> phi(m1) = phi(m2).

  • name used for generating lemma
  • triggers for the lemma
  • conditions for the frame lemma to hold
  • mem1,mem2 to two memories for which the lemma holds

Reversing Models

It is sometimes possible to reverse memory models abstractions into ACSL left-values via the definitions below.

type s_lval = s_host * s_offset list

Reversed ACSL left-value

and s_host =
  1. | Mvar of Frama_c_kernel.Cil_types.varinfo
    (*

    Variable

    *)
  2. | Mmem of Lang.F.term
    (*

    Pointed value

    *)
  3. | Mval of s_lval
    (*

    Pointed value of another abstract left-value

    *)
and s_offset =
  1. | Mfield of Frama_c_kernel.Cil_types.fieldinfo
  2. | Mindex of Lang.F.term
type mval =
  1. | Mterm
    (*

    Not a state-related value

    *)
  2. | Maddr of s_lval
    (*

    The value is the address of an l-value in current memory

    *)
  3. | Mlval of s_lval * Lang.datakind
    (*

    The value is the value of an l-value in current memory

    *)
  4. | Mchunk of string * Lang.datakind
    (*

    The value is an abstract memory chunk (description)

    *)

Reversed abstract value

type update =
  1. | Mstore of s_lval * Lang.F.term
    (*

    An update of the ACSL left-value with the given value

    *)

Reversed update

Memory Models

module type Chunk = sig ... end

Memory Chunks.

module type Sigma = sig ... end

Memory Environments.

module type Model = sig ... end

Memory Models.

C and ACSL Compilers

module type CodeSemantics = sig ... end

Compiler for C expressions

module type LogicSemantics = sig ... end

Compiler for ACSL expressions

module type LogicAssigns = sig ... end

Compiler for Performing Assigns

module type Compiler = sig ... end

All Compilers Together

OCaml

Innovation. Community. Security.