package fehu
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page
Reinforcement learning framework for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha2.tbz
sha256=93abc49d075a1754442ccf495645bc4fdc83e4c66391ec8aca8fa15d2b4f44d2
sha512=5eb958c51f30ae46abded4c96f48d1825f79c7ce03f975f9a6237cdfed0d62c0b4a0774296694def391573d849d1f869919c49008acffca95946b818ad325f6f
doc/fehu.algorithms/Fehu_algorithms/index.html
Module Fehu_algorithmsSource
Reinforcement learning algorithms for Fehu.
Each algorithm follows a functional interface:
Algorithm.initprepares parameters and algorithm state for a given environment;Algorithm.stepperforms a single environment interaction and optimisation update;Algorithm.trainruns a default training loop that repeatedly callsAlgorithm.step.
Available Algorithms
Policy Gradient Methods
Reinforce: Monte Carlo Policy Gradient (REINFORCE)
Value-Based Methods
Dqn: Deep Q-Network (DQN)
Future algorithms:
- PPO: More sample efficient, supports continuous actions, industry standard
- SAC: Off-policy actor-critic, excellent for continuous control
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
On This Page