package fehu

  1. Overview
  2. Docs
Reinforcement learning framework for OCaml

Install

dune-project
 Dependency

Authors

Maintainers

Sources

raven-1.0.0.alpha2.tbz
sha256=93abc49d075a1754442ccf495645bc4fdc83e4c66391ec8aca8fa15d2b4f44d2
sha512=5eb958c51f30ae46abded4c96f48d1825f79c7ce03f975f9a6237cdfed0d62c0b4a0774296694def391573d849d1f869919c49008acffca95946b818ad325f6f

doc/fehu.algorithms/Fehu_algorithms/index.html

Module Fehu_algorithmsSource

Reinforcement learning algorithms for Fehu.

Each algorithm follows a functional interface:

  • Algorithm.init prepares parameters and algorithm state for a given environment;
  • Algorithm.step performs a single environment interaction and optimisation update;
  • Algorithm.train runs a default training loop that repeatedly calls Algorithm.step.

Available Algorithms

Policy Gradient Methods

  • Reinforce: Monte Carlo Policy Gradient (REINFORCE)

Value-Based Methods

  • Dqn: Deep Q-Network (DQN)

Future algorithms:

  • PPO: More sample efficient, supports continuous actions, industry standard
  • SAC: Off-policy actor-critic, excellent for continuous control
Sourcemodule Reinforce : sig ... end

Reinforce algorithm implementation.

Sourcemodule Dqn : sig ... end

Dqn algorithm implementation.