package fehu
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Reinforcement learning framework for OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
raven-1.0.0.alpha2.tbz
sha256=93abc49d075a1754442ccf495645bc4fdc83e4c66391ec8aca8fa15d2b4f44d2
sha512=5eb958c51f30ae46abded4c96f48d1825f79c7ce03f975f9a6237cdfed0d62c0b4a0774296694def391573d849d1f869919c49008acffca95946b818ad325f6f
doc/src/fehu.algorithms/dqn.ml.html
Source file dqn.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556open Kaun open Fehu module Snapshot = Checkpoint.Snapshot type config = { learning_rate : float; gamma : float; epsilon_start : float; epsilon_end : float; epsilon_decay : float; batch_size : int; buffer_capacity : int; target_update_freq : int; warmup_steps : int; } let default_config = { learning_rate = 0.001; gamma = 0.99; epsilon_start = 1.0; epsilon_end = 0.01; epsilon_decay = 1000.0; batch_size = 32; buffer_capacity = 10_000; target_update_freq = 10; warmup_steps = 1000; } type params = Ptree.t type metrics = { loss : float; avg_q_value : float; epsilon : float; episode_return : float option; episode_length : int option; total_steps : int; total_episodes : int; } type state = { q_network : module_; target_network : module_; optimizer : Optimizer.algorithm; target_params : params; opt_state : Optimizer.state; replay : ( (float, Bigarray.float32_elt) Rune.t, (int32, Bigarray.int32_elt) Rune.t ) Buffer.Replay.t; rng : Rune.Rng.key; epsilon_rng : Rune.Rng.key; epsilon_step : int; epsilon_schedule : int -> float; n_actions : int; action_space : (int32, Bigarray.int32_elt) Rune.t Space.t; config : config; total_steps : int; total_episodes : int; current_obs : (float, Bigarray.float32_elt) Rune.t; episode_return_acc : float; episode_length_acc : int; last_metrics : metrics; } let metrics state = state.last_metrics let epsilon_value config step = config.epsilon_end +. (config.epsilon_start -. config.epsilon_end) *. Float.exp (-.float_of_int step /. config.epsilon_decay) let make_optimizer config = let schedule = Optimizer.Schedule.constant config.learning_rate in Optimizer.adam ~lr:schedule () let discrete_cardinality action_space = match Space.boundary_values action_space with | [ Space.Value.Int start; Int finish ] -> finish - start + 1 | [ Space.Value.Int _ ] -> 1 | _ -> invalid_arg "Dqn.init: action space must provide discrete boundary values" let reshape_observation obs = let obs = Rune.cast Rune.float32 obs in match Rune.shape obs with | [| features |] -> Rune.reshape [| 1; features |] obs | [| batch; _ |] when batch = 1 -> obs | _ -> obs let not_done_mask terminated truncated = let done_mask = Rune.logical_or terminated truncated in let done_float = Rune.cast Rune.float32 done_mask in let ones = Rune.full_like done_float 1.0 in Rune.sub ones done_float let compute_td_loss config ~n_actions ~params ~target_params ~q_network ~target_network ~optimizer ~opt_state ~batch = let observations, actions, rewards, next_observations, terminated, truncated = batch in let observations = Rune.cast Rune.float32 observations in let next_observations = Rune.cast Rune.float32 next_observations in let obs_batch = reshape_observation observations in let next_obs_batch = reshape_observation next_observations in let gather_axis = match Rune.shape obs_batch with | [| _; _ |] -> 1 | shape -> Array.length shape - 1 in let actions_vec = Rune.reshape [| (Rune.shape actions).(0) |] actions in let one_hot = Rune.cast Rune.float32 (Rune.one_hot ~num_classes:n_actions actions_vec) in let loss_tensor, grads = value_and_grad (fun current_params -> let q_values = apply q_network current_params ~training:true obs_batch in let masked = Rune.mul q_values one_hot in let chosen_q = Rune.sum ~axes:[ gather_axis ] masked ~keepdims:false in let target_q_values = apply target_network target_params ~training:false next_obs_batch in let max_next_q = Rune.max ~axes:[ gather_axis ] target_q_values ~keepdims:false in let not_done = not_done_mask terminated truncated in let discounted = Rune.mul (Rune.scalar Rune.float32 config.gamma) (Rune.mul not_done max_next_q) in let target = Rune.add rewards discounted in let td_error = Rune.sub chosen_q target in Rune.mean (Rune.square td_error)) params in let loss = (Rune.to_array loss_tensor).(0) in let updates, opt_state' = Optimizer.step optimizer opt_state params grads in let params' = Optimizer.apply_updates params updates in (loss, params', opt_state') let compute_avg_q params q_network observation = let obs = reshape_observation observation in let q_values = apply q_network params ~training:false obs in let axis = Array.length (Rune.shape q_values) - 1 in let mean = Rune.mean ~axes:[ axis ] q_values ~keepdims:false |> Rune.to_array in if Array.length mean = 0 then 0.0 else mean.(0) let sample_batch buffer ~rng ~batch_size = Buffer.Replay.sample_tensors buffer ~rng ~batch_size let initial_metrics config = { loss = 0.0; avg_q_value = 0.0; epsilon = config.epsilon_start; episode_return = None; episode_length = None; total_steps = 0; total_episodes = 0; } let init ~env ~q_network ~rng ~config = let keys = Rune.Rng.split ~n:3 rng in let params = init q_network ~rngs:keys.(0) ~dtype:Rune.float32 in let target_params = Ptree.copy params in let optimizer = make_optimizer config in let opt_state = Optimizer.init optimizer params in let replay = Buffer.Replay.create ~capacity:config.buffer_capacity in let obs, _info = Env.reset env () in let epsilon_schedule step = epsilon_value config step in let action_space = Env.action_space env in let n_actions = discrete_cardinality action_space in let state = { q_network; target_network = q_network; optimizer; target_params; opt_state; replay; rng = keys.(2); epsilon_rng = keys.(1); epsilon_step = 0; epsilon_schedule; n_actions; action_space; config; total_steps = 0; total_episodes = 0; current_obs = obs; episode_return_acc = 0.; episode_length_acc = 0; last_metrics = initial_metrics config; } in (params, state) let update_target_if_needed params state episode_finished = if episode_finished && state.config.target_update_freq > 0 && (state.total_episodes + 1) mod state.config.target_update_freq = 0 then Ptree.copy params else state.target_params let perform_step ~env ~params ~state ~epsilon ~allow_update = let keys = Rune.Rng.split state.rng ~n:3 in let action_rng = keys.(0) in let replay_rng = keys.(1) in let rng_after = keys.(2) in let epsilon_keys = Rune.Rng.split state.epsilon_rng ~n:2 in let epsilon_rng_after = epsilon_keys.(0) in let coin_rng = epsilon_keys.(1) in let coin = Rune.Rng.uniform coin_rng Rune.float32 [| 1 |] |> Rune.to_array |> fun arr -> arr.(0) in let to_action idx = let idx_clamped = Int.max 0 (Int.min (state.n_actions - 1) idx) in match Space.unpack state.action_space (Space.Value.Int idx_clamped) with | Ok action -> action | Error _ -> let action, _ = Space.sample ~rng:action_rng state.action_space in action in let action = if coin < epsilon then let random_idx = let tensor = Rune.Rng.randint action_rng ~min:0 ~max:state.n_actions [| 1 |] in Rune.to_array tensor |> fun arr -> Int32.to_int arr.(0) in to_action random_idx else let obs = reshape_observation state.current_obs in let q_values = apply state.q_network params ~training:false obs in let axis = Array.length (Rune.shape q_values) - 1 in let argmax = Rune.argmax ~axis q_values ~keepdims:false |> Rune.cast Rune.int32 in let best = Rune.to_array argmax |> fun arr -> Int32.to_int arr.(0) in to_action best in if not (Space.contains state.action_space action) then invalid_arg "Dqn.step produced action outside action space"; let transition = Env.step env action in Buffer.Replay.add state.replay { Buffer.observation = state.current_obs; action; reward = transition.reward; next_observation = transition.observation; terminated = transition.terminated; truncated = transition.truncated; }; let total_steps = state.total_steps + 1 in let episode_return_acc = state.episode_return_acc +. transition.reward in let episode_length_acc = state.episode_length_acc + 1 in let buffer_ready = Buffer.Replay.size state.replay >= state.config.batch_size in let loss, params', opt_state', avg_q = if allow_update && buffer_ready then let batch = sample_batch state.replay ~rng:replay_rng ~batch_size:state.config.batch_size in let loss, params', opt_state' = compute_td_loss state.config ~n_actions:state.n_actions ~params ~target_params:state.target_params ~q_network:state.q_network ~target_network:state.target_network ~optimizer:state.optimizer ~opt_state:state.opt_state ~batch in let avg_q = compute_avg_q params state.q_network state.current_obs in (loss, params', opt_state', avg_q) else (0.0, params, state.opt_state, 0.0) in let episode_finished = transition.terminated || transition.truncated in let total_episodes = if episode_finished then state.total_episodes + 1 else state.total_episodes in let next_obs = if episode_finished then fst (Env.reset env ()) else transition.observation in let episode_return, episode_length = if episode_finished then (Some episode_return_acc, Some episode_length_acc) else (None, None) in let episode_return_acc = if episode_finished then 0.0 else episode_return_acc in let episode_length_acc = if episode_finished then 0 else episode_length_acc in let target_params = if allow_update then update_target_if_needed params' state episode_finished else state.target_params in let metrics = { loss; avg_q_value = avg_q; epsilon; episode_return; episode_length; total_steps; total_episodes; } in let new_state = { state with target_params; opt_state = opt_state'; rng = rng_after; epsilon_rng = epsilon_rng_after; epsilon_step = state.epsilon_step + 1; current_obs = next_obs; episode_return_acc; episode_length_acc; total_steps; total_episodes; last_metrics = metrics; } in (params', new_state) let step ~env ~params ~state = let epsilon = state.epsilon_schedule state.epsilon_step in perform_step ~env ~params ~state ~epsilon ~allow_update:true let train ~env ~q_network ~rng ~config ~total_timesteps ?callback () = let params, state = init ~env ~q_network ~rng ~config in let warmup_steps = Int.max 0 config.warmup_steps in let rec warmup params state remaining = if remaining <= 0 then (params, state) else let params', state' = perform_step ~env ~params ~state ~epsilon:1.0 ~allow_update:false in warmup params' state' (remaining - 1) in let params, state = warmup params state warmup_steps in let rec loop params state = if state.total_steps >= total_timesteps then (params, state) else let params', state' = step ~env ~params ~state in let continue = match callback with None -> `Continue | Some f -> f (metrics state') in match continue with | `Stop -> (params', state') | `Continue -> loop params' state' in loop params state let dqn_schema_key = "schema" let dqn_schema_value = "fehu.dqn/2" let config_to_snapshot (c : config) : Snapshot.t = Snapshot.record [ ("learning_rate", Snapshot.float c.learning_rate); ("gamma", Snapshot.float c.gamma); ("epsilon_start", Snapshot.float c.epsilon_start); ("epsilon_end", Snapshot.float c.epsilon_end); ("epsilon_decay", Snapshot.float c.epsilon_decay); ("batch_size", Snapshot.int c.batch_size); ("buffer_capacity", Snapshot.int c.buffer_capacity); ("target_update_freq", Snapshot.int c.target_update_freq); ("warmup_steps", Snapshot.int c.warmup_steps); ] let config_of_snapshot (snapshot : Snapshot.t) : (config, string) result = let open Snapshot in let open Result in let ( let* ) = bind in let find_float field record = match Snapshot.Record.find_opt field record with | Some (Scalar (Float v)) -> Ok v | Some (Scalar (Int v)) -> Ok (float_of_int v) | Some _ -> Error (Printf.sprintf "DQN: field %s must be float" field) | None -> Error (Printf.sprintf "DQN: missing field %s" field) in let find_int field record = match Snapshot.Record.find_opt field record with | Some (Scalar (Int v)) -> Ok v | Some (Scalar (Float v)) -> Ok (int_of_float v) | Some _ -> Error (Printf.sprintf "DQN: field %s must be int" field) | None -> Error (Printf.sprintf "DQN: missing field %s" field) in match snapshot with | Record record -> let* learning_rate = find_float "learning_rate" record in let* gamma = find_float "gamma" record in let* epsilon_start = find_float "epsilon_start" record in let* epsilon_end = find_float "epsilon_end" record in let* epsilon_decay = find_float "epsilon_decay" record in let* batch_size = find_int "batch_size" record in let* buffer_capacity = find_int "buffer_capacity" record in let* target_update_freq = find_int "target_update_freq" record in let warmup_steps = match Snapshot.Record.find_opt "warmup_steps" record with | Some _value -> find_int "warmup_steps" record | None -> Ok default_config.warmup_steps in let* warmup_steps = warmup_steps in Ok { learning_rate; gamma; epsilon_start; epsilon_end; epsilon_decay; batch_size; buffer_capacity; target_update_freq; warmup_steps; } | _ -> Error "DQN: config snapshot must be a record" let save ~path ~params ~state = let snapshot = Snapshot.record [ (dqn_schema_key, Snapshot.string dqn_schema_value); ("config", config_to_snapshot state.config); ("n_actions", Snapshot.int state.n_actions); ("rng", Snapshot.rng state.rng); ("epsilon_rng", Snapshot.rng state.epsilon_rng); ("epsilon_step", Snapshot.int state.epsilon_step); ("total_steps", Snapshot.int state.total_steps); ("total_episodes", Snapshot.int state.total_episodes); ("q_params", Snapshot.ptree params); ("target_params", Snapshot.ptree state.target_params); ("optimizer_state", Optimizer.serialize state.opt_state); ] in match Checkpoint.write_snapshot_file_with ~path ~encode:(fun () -> snapshot) with | Ok () -> () | Error err -> failwith (Printf.sprintf "Dqn.save: %s" (Checkpoint.error_to_string err)) let load ~path ~env ~q_network ~config = let open Result in let decode snapshot = let open Snapshot in let ( let* ) = bind in match snapshot with | Record record -> let validate_schema () = match Snapshot.Record.find_opt dqn_schema_key record with | Some (Scalar (String value)) when String.equal value dqn_schema_value -> Ok () | Some (Scalar (String value)) -> Error ("DQN: unsupported snapshot schema " ^ value) | Some _ -> Error "DQN: invalid schema field" | None -> Ok () in let* () = validate_schema () in let* stored_config = match Snapshot.Record.find_opt "config" record with | Some c -> config_of_snapshot c | None -> Error "DQN: missing config field" in if stored_config <> config then Error "DQN: config mismatch between snapshot and requested config" else let find field = match Snapshot.Record.find_opt field record with | Some value -> Ok value | None -> Error ("DQN: missing field " ^ field) in let decode_rng = function | Scalar (Int seed) -> Ok (Rune.Rng.key seed) | Scalar (Float seed) -> Ok (Rune.Rng.key (int_of_float seed)) | _ -> Error "DQN: rng field must be scalar" in let decode_int field = match field with | Scalar (Int v) -> Ok v | Scalar (Float v) -> Ok (int_of_float v) | _ -> Error "DQN: expected integer" in let* rng_node = find "rng" in let* rng_value = decode_rng rng_node in let* epsilon_rng_node = find "epsilon_rng" in let* epsilon_rng = decode_rng epsilon_rng_node in let* epsilon_step_node = find "epsilon_step" in let* epsilon_step = decode_int epsilon_step_node in let* total_steps_node = find "total_steps" in let* total_steps = decode_int total_steps_node in let* total_episodes_node = find "total_episodes" in let* total_episodes = decode_int total_episodes_node in let* q_params_node = find "q_params" in let* params = match Snapshot.to_ptree q_params_node with | Ok ptree -> Ok ptree | Error msg -> Error ("DQN: " ^ msg) in let* target_params_node = find "target_params" in let* target_params = match Snapshot.to_ptree target_params_node with | Ok ptree -> Ok ptree | Error msg -> Error ("DQN: " ^ msg) in let optimizer = make_optimizer config in let* opt_state_node = find "optimizer_state" in let* opt_state = match Optimizer.restore optimizer opt_state_node with | Ok state -> Ok state | Error msg -> Error ("DQN: " ^ msg) in let* n_actions_node = find "n_actions" in let* n_actions = decode_int n_actions_node in let replay = Buffer.Replay.create ~capacity:config.buffer_capacity in let obs, _ = Env.reset env () in let epsilon_schedule step = epsilon_value config step in let state = { q_network; target_network = q_network; optimizer; target_params; opt_state; replay; rng = rng_value; epsilon_rng; epsilon_step; epsilon_schedule; n_actions; action_space = Env.action_space env; config; total_steps; total_episodes; current_obs = obs; episode_return_acc = 0.; episode_length_acc = 0; last_metrics = initial_metrics config; } in Ok (params, state) | _ -> Error "DQN: invalid snapshot format" in match Checkpoint.load_snapshot_file_with ~path ~decode with | Ok result -> Ok result | Error err -> Error (Checkpoint.error_to_string err)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>