package fehu

  1. Overview
  2. Docs
Reinforcement learning framework for OCaml

Install

dune-project
 Dependency

Authors

Maintainers

Sources

raven-1.0.0.alpha2.tbz
sha256=93abc49d075a1754442ccf495645bc4fdc83e4c66391ec8aca8fa15d2b4f44d2
sha512=5eb958c51f30ae46abded4c96f48d1825f79c7ce03f975f9a6237cdfed0d62c0b4a0774296694def391573d849d1f869919c49008acffca95946b818ad325f6f

doc/src/fehu.algorithms/dqn.ml.html

Source file dqn.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
open Kaun
open Fehu
module Snapshot = Checkpoint.Snapshot

type config = {
  learning_rate : float;
  gamma : float;
  epsilon_start : float;
  epsilon_end : float;
  epsilon_decay : float;
  batch_size : int;
  buffer_capacity : int;
  target_update_freq : int;
  warmup_steps : int;
}

let default_config =
  {
    learning_rate = 0.001;
    gamma = 0.99;
    epsilon_start = 1.0;
    epsilon_end = 0.01;
    epsilon_decay = 1000.0;
    batch_size = 32;
    buffer_capacity = 10_000;
    target_update_freq = 10;
    warmup_steps = 1000;
  }

type params = Ptree.t

type metrics = {
  loss : float;
  avg_q_value : float;
  epsilon : float;
  episode_return : float option;
  episode_length : int option;
  total_steps : int;
  total_episodes : int;
}

type state = {
  q_network : module_;
  target_network : module_;
  optimizer : Optimizer.algorithm;
  target_params : params;
  opt_state : Optimizer.state;
  replay :
    ( (float, Bigarray.float32_elt) Rune.t,
      (int32, Bigarray.int32_elt) Rune.t )
    Buffer.Replay.t;
  rng : Rune.Rng.key;
  epsilon_rng : Rune.Rng.key;
  epsilon_step : int;
  epsilon_schedule : int -> float;
  n_actions : int;
  action_space : (int32, Bigarray.int32_elt) Rune.t Space.t;
  config : config;
  total_steps : int;
  total_episodes : int;
  current_obs : (float, Bigarray.float32_elt) Rune.t;
  episode_return_acc : float;
  episode_length_acc : int;
  last_metrics : metrics;
}

let metrics state = state.last_metrics

let epsilon_value config step =
  config.epsilon_end
  +. (config.epsilon_start -. config.epsilon_end)
     *. Float.exp (-.float_of_int step /. config.epsilon_decay)

let make_optimizer config =
  let schedule = Optimizer.Schedule.constant config.learning_rate in
  Optimizer.adam ~lr:schedule ()

let discrete_cardinality action_space =
  match Space.boundary_values action_space with
  | [ Space.Value.Int start; Int finish ] -> finish - start + 1
  | [ Space.Value.Int _ ] -> 1
  | _ ->
      invalid_arg "Dqn.init: action space must provide discrete boundary values"

let reshape_observation obs =
  let obs = Rune.cast Rune.float32 obs in
  match Rune.shape obs with
  | [| features |] -> Rune.reshape [| 1; features |] obs
  | [| batch; _ |] when batch = 1 -> obs
  | _ -> obs

let not_done_mask terminated truncated =
  let done_mask = Rune.logical_or terminated truncated in
  let done_float = Rune.cast Rune.float32 done_mask in
  let ones = Rune.full_like done_float 1.0 in
  Rune.sub ones done_float

let compute_td_loss config ~n_actions ~params ~target_params ~q_network
    ~target_network ~optimizer ~opt_state ~batch =
  let observations, actions, rewards, next_observations, terminated, truncated =
    batch
  in
  let observations = Rune.cast Rune.float32 observations in
  let next_observations = Rune.cast Rune.float32 next_observations in
  let obs_batch = reshape_observation observations in
  let next_obs_batch = reshape_observation next_observations in
  let gather_axis =
    match Rune.shape obs_batch with
    | [| _; _ |] -> 1
    | shape -> Array.length shape - 1
  in
  let actions_vec = Rune.reshape [| (Rune.shape actions).(0) |] actions in
  let one_hot =
    Rune.cast Rune.float32 (Rune.one_hot ~num_classes:n_actions actions_vec)
  in
  let loss_tensor, grads =
    value_and_grad
      (fun current_params ->
        let q_values =
          apply q_network current_params ~training:true obs_batch
        in
        let masked = Rune.mul q_values one_hot in
        let chosen_q = Rune.sum ~axes:[ gather_axis ] masked ~keepdims:false in
        let target_q_values =
          apply target_network target_params ~training:false next_obs_batch
        in
        let max_next_q =
          Rune.max ~axes:[ gather_axis ] target_q_values ~keepdims:false
        in
        let not_done = not_done_mask terminated truncated in
        let discounted =
          Rune.mul
            (Rune.scalar Rune.float32 config.gamma)
            (Rune.mul not_done max_next_q)
        in
        let target = Rune.add rewards discounted in
        let td_error = Rune.sub chosen_q target in
        Rune.mean (Rune.square td_error))
      params
  in
  let loss = (Rune.to_array loss_tensor).(0) in
  let updates, opt_state' = Optimizer.step optimizer opt_state params grads in
  let params' = Optimizer.apply_updates params updates in
  (loss, params', opt_state')

let compute_avg_q params q_network observation =
  let obs = reshape_observation observation in
  let q_values = apply q_network params ~training:false obs in
  let axis = Array.length (Rune.shape q_values) - 1 in
  let mean =
    Rune.mean ~axes:[ axis ] q_values ~keepdims:false |> Rune.to_array
  in
  if Array.length mean = 0 then 0.0 else mean.(0)

let sample_batch buffer ~rng ~batch_size =
  Buffer.Replay.sample_tensors buffer ~rng ~batch_size

let initial_metrics config =
  {
    loss = 0.0;
    avg_q_value = 0.0;
    epsilon = config.epsilon_start;
    episode_return = None;
    episode_length = None;
    total_steps = 0;
    total_episodes = 0;
  }

let init ~env ~q_network ~rng ~config =
  let keys = Rune.Rng.split ~n:3 rng in
  let params = init q_network ~rngs:keys.(0) ~dtype:Rune.float32 in
  let target_params = Ptree.copy params in
  let optimizer = make_optimizer config in
  let opt_state = Optimizer.init optimizer params in
  let replay = Buffer.Replay.create ~capacity:config.buffer_capacity in
  let obs, _info = Env.reset env () in
  let epsilon_schedule step = epsilon_value config step in
  let action_space = Env.action_space env in
  let n_actions = discrete_cardinality action_space in
  let state =
    {
      q_network;
      target_network = q_network;
      optimizer;
      target_params;
      opt_state;
      replay;
      rng = keys.(2);
      epsilon_rng = keys.(1);
      epsilon_step = 0;
      epsilon_schedule;
      n_actions;
      action_space;
      config;
      total_steps = 0;
      total_episodes = 0;
      current_obs = obs;
      episode_return_acc = 0.;
      episode_length_acc = 0;
      last_metrics = initial_metrics config;
    }
  in
  (params, state)

let update_target_if_needed params state episode_finished =
  if
    episode_finished
    && state.config.target_update_freq > 0
    && (state.total_episodes + 1) mod state.config.target_update_freq = 0
  then Ptree.copy params
  else state.target_params

let perform_step ~env ~params ~state ~epsilon ~allow_update =
  let keys = Rune.Rng.split state.rng ~n:3 in
  let action_rng = keys.(0) in
  let replay_rng = keys.(1) in
  let rng_after = keys.(2) in
  let epsilon_keys = Rune.Rng.split state.epsilon_rng ~n:2 in
  let epsilon_rng_after = epsilon_keys.(0) in
  let coin_rng = epsilon_keys.(1) in
  let coin =
    Rune.Rng.uniform coin_rng Rune.float32 [| 1 |] |> Rune.to_array
    |> fun arr -> arr.(0)
  in
  let to_action idx =
    let idx_clamped = Int.max 0 (Int.min (state.n_actions - 1) idx) in
    match Space.unpack state.action_space (Space.Value.Int idx_clamped) with
    | Ok action -> action
    | Error _ ->
        let action, _ = Space.sample ~rng:action_rng state.action_space in
        action
  in
  let action =
    if coin < epsilon then
      let random_idx =
        let tensor =
          Rune.Rng.randint action_rng ~min:0 ~max:state.n_actions [| 1 |]
        in
        Rune.to_array tensor |> fun arr -> Int32.to_int arr.(0)
      in
      to_action random_idx
    else
      let obs = reshape_observation state.current_obs in
      let q_values = apply state.q_network params ~training:false obs in
      let axis = Array.length (Rune.shape q_values) - 1 in
      let argmax =
        Rune.argmax ~axis q_values ~keepdims:false |> Rune.cast Rune.int32
      in
      let best = Rune.to_array argmax |> fun arr -> Int32.to_int arr.(0) in
      to_action best
  in
  if not (Space.contains state.action_space action) then
    invalid_arg "Dqn.step produced action outside action space";
  let transition = Env.step env action in
  Buffer.Replay.add state.replay
    {
      Buffer.observation = state.current_obs;
      action;
      reward = transition.reward;
      next_observation = transition.observation;
      terminated = transition.terminated;
      truncated = transition.truncated;
    };
  let total_steps = state.total_steps + 1 in
  let episode_return_acc = state.episode_return_acc +. transition.reward in
  let episode_length_acc = state.episode_length_acc + 1 in
  let buffer_ready =
    Buffer.Replay.size state.replay >= state.config.batch_size
  in
  let loss, params', opt_state', avg_q =
    if allow_update && buffer_ready then
      let batch =
        sample_batch state.replay ~rng:replay_rng
          ~batch_size:state.config.batch_size
      in
      let loss, params', opt_state' =
        compute_td_loss state.config ~n_actions:state.n_actions ~params
          ~target_params:state.target_params ~q_network:state.q_network
          ~target_network:state.target_network ~optimizer:state.optimizer
          ~opt_state:state.opt_state ~batch
      in
      let avg_q = compute_avg_q params state.q_network state.current_obs in
      (loss, params', opt_state', avg_q)
    else (0.0, params, state.opt_state, 0.0)
  in
  let episode_finished = transition.terminated || transition.truncated in
  let total_episodes =
    if episode_finished then state.total_episodes + 1 else state.total_episodes
  in
  let next_obs =
    if episode_finished then fst (Env.reset env ()) else transition.observation
  in
  let episode_return, episode_length =
    if episode_finished then (Some episode_return_acc, Some episode_length_acc)
    else (None, None)
  in
  let episode_return_acc =
    if episode_finished then 0.0 else episode_return_acc
  in
  let episode_length_acc = if episode_finished then 0 else episode_length_acc in
  let target_params =
    if allow_update then update_target_if_needed params' state episode_finished
    else state.target_params
  in
  let metrics =
    {
      loss;
      avg_q_value = avg_q;
      epsilon;
      episode_return;
      episode_length;
      total_steps;
      total_episodes;
    }
  in
  let new_state =
    {
      state with
      target_params;
      opt_state = opt_state';
      rng = rng_after;
      epsilon_rng = epsilon_rng_after;
      epsilon_step = state.epsilon_step + 1;
      current_obs = next_obs;
      episode_return_acc;
      episode_length_acc;
      total_steps;
      total_episodes;
      last_metrics = metrics;
    }
  in
  (params', new_state)

let step ~env ~params ~state =
  let epsilon = state.epsilon_schedule state.epsilon_step in
  perform_step ~env ~params ~state ~epsilon ~allow_update:true

let train ~env ~q_network ~rng ~config ~total_timesteps ?callback () =
  let params, state = init ~env ~q_network ~rng ~config in
  let warmup_steps = Int.max 0 config.warmup_steps in
  let rec warmup params state remaining =
    if remaining <= 0 then (params, state)
    else
      let params', state' =
        perform_step ~env ~params ~state ~epsilon:1.0 ~allow_update:false
      in
      warmup params' state' (remaining - 1)
  in
  let params, state = warmup params state warmup_steps in
  let rec loop params state =
    if state.total_steps >= total_timesteps then (params, state)
    else
      let params', state' = step ~env ~params ~state in
      let continue =
        match callback with None -> `Continue | Some f -> f (metrics state')
      in
      match continue with
      | `Stop -> (params', state')
      | `Continue -> loop params' state'
  in
  loop params state

let dqn_schema_key = "schema"
let dqn_schema_value = "fehu.dqn/2"

let config_to_snapshot (c : config) : Snapshot.t =
  Snapshot.record
    [
      ("learning_rate", Snapshot.float c.learning_rate);
      ("gamma", Snapshot.float c.gamma);
      ("epsilon_start", Snapshot.float c.epsilon_start);
      ("epsilon_end", Snapshot.float c.epsilon_end);
      ("epsilon_decay", Snapshot.float c.epsilon_decay);
      ("batch_size", Snapshot.int c.batch_size);
      ("buffer_capacity", Snapshot.int c.buffer_capacity);
      ("target_update_freq", Snapshot.int c.target_update_freq);
      ("warmup_steps", Snapshot.int c.warmup_steps);
    ]

let config_of_snapshot (snapshot : Snapshot.t) : (config, string) result =
  let open Snapshot in
  let open Result in
  let ( let* ) = bind in
  let find_float field record =
    match Snapshot.Record.find_opt field record with
    | Some (Scalar (Float v)) -> Ok v
    | Some (Scalar (Int v)) -> Ok (float_of_int v)
    | Some _ -> Error (Printf.sprintf "DQN: field %s must be float" field)
    | None -> Error (Printf.sprintf "DQN: missing field %s" field)
  in
  let find_int field record =
    match Snapshot.Record.find_opt field record with
    | Some (Scalar (Int v)) -> Ok v
    | Some (Scalar (Float v)) -> Ok (int_of_float v)
    | Some _ -> Error (Printf.sprintf "DQN: field %s must be int" field)
    | None -> Error (Printf.sprintf "DQN: missing field %s" field)
  in
  match snapshot with
  | Record record ->
      let* learning_rate = find_float "learning_rate" record in
      let* gamma = find_float "gamma" record in
      let* epsilon_start = find_float "epsilon_start" record in
      let* epsilon_end = find_float "epsilon_end" record in
      let* epsilon_decay = find_float "epsilon_decay" record in
      let* batch_size = find_int "batch_size" record in
      let* buffer_capacity = find_int "buffer_capacity" record in
      let* target_update_freq = find_int "target_update_freq" record in
      let warmup_steps =
        match Snapshot.Record.find_opt "warmup_steps" record with
        | Some _value -> find_int "warmup_steps" record
        | None -> Ok default_config.warmup_steps
      in
      let* warmup_steps = warmup_steps in
      Ok
        {
          learning_rate;
          gamma;
          epsilon_start;
          epsilon_end;
          epsilon_decay;
          batch_size;
          buffer_capacity;
          target_update_freq;
          warmup_steps;
        }
  | _ -> Error "DQN: config snapshot must be a record"

let save ~path ~params ~state =
  let snapshot =
    Snapshot.record
      [
        (dqn_schema_key, Snapshot.string dqn_schema_value);
        ("config", config_to_snapshot state.config);
        ("n_actions", Snapshot.int state.n_actions);
        ("rng", Snapshot.rng state.rng);
        ("epsilon_rng", Snapshot.rng state.epsilon_rng);
        ("epsilon_step", Snapshot.int state.epsilon_step);
        ("total_steps", Snapshot.int state.total_steps);
        ("total_episodes", Snapshot.int state.total_episodes);
        ("q_params", Snapshot.ptree params);
        ("target_params", Snapshot.ptree state.target_params);
        ("optimizer_state", Optimizer.serialize state.opt_state);
      ]
  in
  match
    Checkpoint.write_snapshot_file_with ~path ~encode:(fun () -> snapshot)
  with
  | Ok () -> ()
  | Error err ->
      failwith (Printf.sprintf "Dqn.save: %s" (Checkpoint.error_to_string err))

let load ~path ~env ~q_network ~config =
  let open Result in
  let decode snapshot =
    let open Snapshot in
    let ( let* ) = bind in
    match snapshot with
    | Record record ->
        let validate_schema () =
          match Snapshot.Record.find_opt dqn_schema_key record with
          | Some (Scalar (String value))
            when String.equal value dqn_schema_value ->
              Ok ()
          | Some (Scalar (String value)) ->
              Error ("DQN: unsupported snapshot schema " ^ value)
          | Some _ -> Error "DQN: invalid schema field"
          | None -> Ok ()
        in
        let* () = validate_schema () in
        let* stored_config =
          match Snapshot.Record.find_opt "config" record with
          | Some c -> config_of_snapshot c
          | None -> Error "DQN: missing config field"
        in
        if stored_config <> config then
          Error "DQN: config mismatch between snapshot and requested config"
        else
          let find field =
            match Snapshot.Record.find_opt field record with
            | Some value -> Ok value
            | None -> Error ("DQN: missing field " ^ field)
          in
          let decode_rng = function
            | Scalar (Int seed) -> Ok (Rune.Rng.key seed)
            | Scalar (Float seed) -> Ok (Rune.Rng.key (int_of_float seed))
            | _ -> Error "DQN: rng field must be scalar"
          in
          let decode_int field =
            match field with
            | Scalar (Int v) -> Ok v
            | Scalar (Float v) -> Ok (int_of_float v)
            | _ -> Error "DQN: expected integer"
          in
          let* rng_node = find "rng" in
          let* rng_value = decode_rng rng_node in
          let* epsilon_rng_node = find "epsilon_rng" in
          let* epsilon_rng = decode_rng epsilon_rng_node in
          let* epsilon_step_node = find "epsilon_step" in
          let* epsilon_step = decode_int epsilon_step_node in
          let* total_steps_node = find "total_steps" in
          let* total_steps = decode_int total_steps_node in
          let* total_episodes_node = find "total_episodes" in
          let* total_episodes = decode_int total_episodes_node in
          let* q_params_node = find "q_params" in
          let* params =
            match Snapshot.to_ptree q_params_node with
            | Ok ptree -> Ok ptree
            | Error msg -> Error ("DQN: " ^ msg)
          in
          let* target_params_node = find "target_params" in
          let* target_params =
            match Snapshot.to_ptree target_params_node with
            | Ok ptree -> Ok ptree
            | Error msg -> Error ("DQN: " ^ msg)
          in
          let optimizer = make_optimizer config in
          let* opt_state_node = find "optimizer_state" in
          let* opt_state =
            match Optimizer.restore optimizer opt_state_node with
            | Ok state -> Ok state
            | Error msg -> Error ("DQN: " ^ msg)
          in
          let* n_actions_node = find "n_actions" in
          let* n_actions = decode_int n_actions_node in
          let replay = Buffer.Replay.create ~capacity:config.buffer_capacity in
          let obs, _ = Env.reset env () in
          let epsilon_schedule step = epsilon_value config step in
          let state =
            {
              q_network;
              target_network = q_network;
              optimizer;
              target_params;
              opt_state;
              replay;
              rng = rng_value;
              epsilon_rng;
              epsilon_step;
              epsilon_schedule;
              n_actions;
              action_space = Env.action_space env;
              config;
              total_steps;
              total_episodes;
              current_obs = obs;
              episode_return_acc = 0.;
              episode_length_acc = 0;
              last_metrics = initial_metrics config;
            }
          in
          Ok (params, state)
    | _ -> Error "DQN: invalid snapshot format"
  in
  match Checkpoint.load_snapshot_file_with ~path ~decode with
  | Ok result -> Ok result
  | Error err -> Error (Checkpoint.error_to_string err)