package dmap
Library
Module
Module type
Parameter
Class
Class type
Dependent (or heterogeneous) association tables over ordered types.
This module implements applicative association tables, also known as finite maps or dictionaries, given a total ordering function over the keys. The particularity is that the types of the values recorded in the tables may vary, depending on the keys, hence the name heterogeneous (or dependent) maps.
All operations over maps are purely applicative (no side-effects). The implementation uses balanced binary trees, and therefore searching and insertion take time logarithmic in the size of the map.
For instance:
module IntBool = struct
(* The type for the keys of our maps. The index ['a] denotes the type
of the values that will be associated to the keys. In the case of
the [Int] constructor, the map will expect data of type [string].
In the case of the [Bool] constructor, the map will expect values
of type [char].
*)
type 'a t = Int : int -> string t | Bool : bool -> char t
(* Total order on values of type [_ t]. *)
let compare (type a1 a2) (v1 : a1 t) (v2 : a2 t) : (a1, a2) cmp =
match (v1, v2) with
| Int n1, Int n2 -> if n1 = n2 then Eq else if n1 < n2 then Lt else Gt
| Bool b1, Bool b2 ->
if b1 = b2 then Eq else if (not b1) || b2 then Lt else Gt
| Bool _, Int _ -> Lt
| Int _, Bool _ -> Gt
end
(* We create a module of maps whose keys have type [IntBool.t] *)
module IntBoolMap = Dmap.Make(IntBool)
(* Definition of a map of type [IntBoolMap.t]. *)
let m = IntBoolMap.(empty |> add (Int 42) "hello" |> add (Bool true) 'A')
(* Some queries on the map [m] *)
let () =
assert (IntBoolMap.find_opt (Int 42) m = Some "hello");
assert (IntBoolMap.find_opt (Bool true) m = Some 'A');
assert (IntBoolMap.find_opt (Bool false) m = None)
This creates a new module IntBoolMap
, with a new type IntBoolMap.t
of maps from IntBool.t
to string
or char
. As specified by the GADT definition of IntBool.t
, the values associated to the keys of the form Int n
have type string
, and the values associated to the keys of the form Bool b
have type char
.
The type of comparisons: ('a, 'b) cmp
denotes comparisons between values of types 'a
and 'b
. The types 'a
and 'b
might be different. Lt
denotes "lesser than", Eq
denotes "equal", and Gt
denotes "greater than". When the Eq
constructor is used, we learn that 'a
and 'b
are the same.
module type DORDERED = sig ... end
The signature of dependently-ordered types. This is the input signature of the functor Make
.
module type S_WITH_VALUE = sig ... end
Output signature of the functor MakeWithValue
.
module type S = S_WITH_VALUE with type 'a value := 'a
Output signature of the functor Make
.
module type TYPE1 = sig ... end
Signature for types with 1 parameter.
module MakeWithValue
(Ord : DORDERED)
(Val : TYPE1) :
S_WITH_VALUE with type 'a key = 'a Ord.t and type 'a value = 'a Val.t
Functor building an implementation of the dependent map structure given a totally ordered type of indexed keys and a type of values.
Functor building an implementation of the dependent map structure given a totally ordered type of indexed keys.
module MakeMap
(X : DORDERED) :
Map.S
with type key = ToOrdered(X).t
and type 'a t = 'a Map.Make(ToOrdered(X)).t
Functor that creates a non-dependendent map for keys of a DORDERED
type
Functor that creates a set of values of a DORDERED
type
Functor that extends the indices of a DORDERED
type, given some type-level function
Functor that extends the indices of a DORDERED
type by adding some data to its left-hand side