package ctypes

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file ctypes_memory.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
(*
 * Copyright (c) 2013 Jeremy Yallop.
 *
 * This file is distributed under the terms of the MIT License.
 * See the file LICENSE for details.
 *)

[@@@warning "-9-27"]

open Ctypes_static

module Stubs = Ctypes_memory_stubs
module Raw = Ctypes_ptr.Raw
module Fat = Ctypes_ptr.Fat

let castp reftype (CPointer p) = CPointer (Fat.coerce p reftype)

let make_unmanaged ~reftyp p = Fat.make ~managed:None ~reftyp p

(* Describes how to read a value, e.g. from a return buffer *)
let rec build : type a b. a typ -> (_, b typ) Fat.t -> a
 = function
    | Void ->
      fun _ -> ()
    | Primitive p -> Stubs.read p
    | Struct { spec = Incomplete _ } ->
      raise IncompleteType
    | Struct { spec = Complete { size } } as reftyp ->
      (fun buf ->
        let p = Stubs.allocate 1 size in
        let dst = Fat.make ~managed:(Some (Obj.repr p)) ~reftyp (Stubs.block_address p) in
        let () = Stubs.memcpy ~size ~dst ~src:buf in
        { structured = CPointer dst})
    | Pointer reftyp ->
      (fun buf -> CPointer (make_unmanaged ~reftyp (Stubs.Pointer.read buf)))
    | Funptr fn ->
      (fun buf -> Static_funptr (make_unmanaged ~reftyp:fn (Stubs.Pointer.read buf)))
    | View { read; ty } ->
      let buildty = build ty in
      (fun buf -> read (buildty buf))
    | Qualified (_, ty) -> build ty
    | OCaml _ -> (fun buf -> assert false)
    (* The following cases should never happen; non-struct aggregate
       types are excluded during type construction. *)
    | Union _ -> assert false
    | Array _ -> assert false
    | Bigarray _ -> assert false
    | Abstract _ -> assert false

let rec write : type a b. a typ -> a -> (_, b) Fat.t -> unit
  = let write_aggregate size { structured = CPointer src } dst =
      Stubs.memcpy ~size ~dst ~src
    in
    function
    | Void -> (fun _ _ -> ())
    | Primitive p -> Stubs.write p
    | Pointer _ ->
      (fun (CPointer p) dst -> Stubs.Pointer.write p dst)
    | Funptr _ ->
      (fun (Static_funptr p) dst -> Stubs.Pointer.write p dst)
    | Struct { spec = Incomplete _ } -> raise IncompleteType
    | Struct { spec = Complete _ } as s -> write_aggregate (sizeof s)
    | Union { uspec = None } -> raise IncompleteType
    | Union { uspec = Some { size } } -> write_aggregate size
    | Abstract { asize } -> write_aggregate asize
    | Array _ as a ->
      let size = sizeof a in
      (fun { astart = CPointer src } dst ->
        Stubs.memcpy ~size ~dst ~src)
    | Bigarray b as t ->
      let size = sizeof t in
      (fun ba dst ->
        let src = Fat.make ~managed:ba ~reftyp:Void
          (Ctypes_bigarray.unsafe_address ba)
        in
        Stubs.memcpy ~size ~dst ~src)
    | View { write = w; ty } ->
      let writety = write ty in
      (fun v -> writety (w v))
    | Qualified (_, ty) -> write ty
    | OCaml _ -> raise IncompleteType

let null : unit ptr = CPointer (Fat.make ~managed:None ~reftyp:Void Raw.null)

let rec (!@) : type a. a ptr -> a
  = fun (CPointer cptr as ptr) ->
    match Fat.reftype cptr with
      | Void -> raise IncompleteType
      | Union { uspec = None } -> raise IncompleteType
      | Struct { spec = Incomplete _ } -> raise IncompleteType
      | View { read; ty } -> read (!@ (CPointer (Fat.coerce cptr ty)))
      (* If it's a reference type then we take a reference *)
      | Union _ -> { structured = ptr }
      | Struct _ -> { structured = ptr }
      | Array (elemtype, alength) ->
        { astart = CPointer (Fat.coerce cptr elemtype); alength }
      | Bigarray b -> Ctypes_bigarray.view b cptr
      | Abstract _ -> { structured = ptr }
      | OCaml _ -> raise IncompleteType
      (* If it's a value type then we cons a new value. *)
      | _ -> build (Fat.reftype cptr) cptr

let ptr_diff : type a b. (a, b) pointer -> (a, b) pointer -> int
  = fun l r ->
    match l, r with
    | CPointer lp, CPointer rp ->
      (* We assume the pointers are properly aligned, or at least that
         the difference is a multiple of sizeof reftype. *)
      Fat.diff_bytes lp rp / sizeof (Fat.reftype lp)
    | OCamlRef (lo, l, _), OCamlRef (ro, r, _) ->
      if l != r then invalid_arg "Ctypes.ptr_diff";
      ro - lo

let (+@) : type a b. (a, b) pointer -> int -> (a, b) pointer
  = fun p x ->
    match p with
    | CPointer p ->
      CPointer (Fat.add_bytes p (x * sizeof (Fat.reftype p)))
    | OCamlRef (offset, obj, ty) ->
      OCamlRef (offset + x, obj, ty)

let (-@) p x = p +@ (-x)

let (<-@) : type a. a ptr -> a -> unit
  = fun (CPointer p) v -> write (Fat.reftype p) v p

let from_voidp = castp
let to_voidp p = castp Void p

let allocate_n
  : type a. ?finalise:(a ptr -> unit) -> a typ -> count:int -> a ptr
  = fun ?finalise reftyp ~count ->
    let package p =
      CPointer (Fat.make ~managed:(Some (Obj.repr p)) ~reftyp (Stubs.block_address p))
    in
    let finalise = match finalise with
      | Some f -> Gc.finalise (fun p -> f (package p))
      | None -> ignore
    in
    let p = Stubs.allocate count (sizeof reftyp) in begin
      finalise p;
      package p
    end

let allocate : type a. ?finalise:(a ptr -> unit) -> a typ -> a -> a ptr
  = fun ?finalise reftype v ->
    let p = allocate_n ?finalise ~count:1 reftype in begin
      p <-@ v;
      p
    end

let ptr_compare (CPointer l) (CPointer r) = Fat.(compare l r)

let reference_type (CPointer p) = Fat.reftype p

let ptr_of_raw_address addr =
  CPointer (make_unmanaged ~reftyp:Void (Raw.of_nativeint addr))

let funptr_of_raw_address addr =
  Static_funptr (make_unmanaged ~reftyp:(void @-> returning void) (Raw.of_nativeint addr))

let raw_address_of_ptr (CPointer p) =
  (* This is unsafe by definition: if the object to which [p] refers
     is collected at this point then the returned address is invalid.
     If there is an OCaml object associated with [p] then it is vital
     that the caller retains a reference to it. *)
  Raw.to_nativeint (Fat.unsafe_raw_addr p)

module CArray =
struct
  type 'a t = 'a carray

  let check_bound { alength } i =
    if i < 0 || i >= alength then
      invalid_arg "index out of bounds"

  let unsafe_get { astart } n = !@(astart +@ n)
  let unsafe_set { astart } n v = (astart +@ n) <-@ v

  let get arr n =
    check_bound arr n;
    unsafe_get arr n

  let set arr n v =
    check_bound arr n;
    unsafe_set arr n v

  let start { astart } = astart
  let length { alength } = alength
  let from_ptr astart alength = { astart; alength }

  let fill { alength; astart = CPointer p } v =
    let size = sizeof (Fat.reftype p) in
    let w = write (Fat.reftype p) v in
    for i = 0 to alength - 1 do
      w (Fat.add_bytes p (i * size))
    done

  let make : type a. ?finalise:(a t -> unit) -> a typ -> ?initial:a -> int -> a t
    = fun ?finalise reftype ?initial count ->
      let finalise = match finalise with
        | Some f -> Some (fun astart -> f { astart; alength = count } )
        | None -> None
      in
      let arr = { astart = allocate_n ?finalise ~count reftype;
                  alength = count } in
      match initial with
        | None -> arr
        | Some v -> fill arr v; arr

  let copy {astart = CPointer src; alength} =
    begin
      let reftyp = Fat.reftype src in
      let CPointer dst as r = allocate_n reftyp ~count:alength in
      let () = Stubs.memcpy ~dst ~src ~size:(alength * sizeof reftyp) in
      from_ptr r alength
    end

  let sub arr ~pos ~length:len =
  if pos < 0 || len < 0 || pos > length arr - len
  then invalid_arg "CArray.sub"
  else copy { astart = arr.astart +@ pos; alength = len }

  let element_type { astart } = reference_type astart

  let of_string string =
    let len = String.length string in
    let arr = make char (len + 1) in
    String.iteri (set arr) string;
    set arr len '\x00';
    arr

  let of_list typ list =
    let arr = make typ (List.length list) in
    List.iteri (set arr) list;
    arr

  let to_list a =
    let l = ref [] in
    for i = length a - 1 downto 0 do
      l := get a i :: !l
    done;
    !l

  let iter f a =
    for i = 0 to length a - 1 do
      f (unsafe_get a i)
    done

  let iteri f a =
    for i = 0 to length a - 1 do
      f i (unsafe_get a i)
    done

  let map typ f a =
    let l = length a in
    let r = make typ l in
    for i = 0 to l - 1 do
      unsafe_set r i (f (unsafe_get a i))
    done;
    r

  let mapi typ f a =
    let l = length a in
    let r = make typ l in
    for i = 0 to l - 1 do
      unsafe_set r i (f i (unsafe_get a i))
    done;
    r

  let fold_left f x a =
    let r = ref x in
    for i = 0 to length a - 1 do
      r := f !r (unsafe_get a i)
    done;
    !r

  let fold_right f a x =
    let r = ref x in
    for i = length a - 1 downto 0 do
      r := f (unsafe_get a i) !r
    done;
    !r
end

let make ?finalise s =
  let finalise = match finalise with
    | Some f -> Some (fun structured -> f { structured })
    | None -> None in
  { structured = allocate_n ?finalise s ~count:1 }
let (|->) (CPointer p) { ftype; foffset } =
  CPointer (Fat.(add_bytes (Fat.coerce p ftype) foffset))

let (@.) { structured = p } f = p |-> f
let setf s field v = (s @. field) <-@ v
let getf s field = !@(s @. field)

let addr { structured } = structured

open Bigarray_compat

let _bigarray_start kind ba =
  let raw_address = Ctypes_bigarray.unsafe_address ba in
  let reftyp = Primitive (Ctypes_bigarray.prim_of_kind kind) in
  CPointer (Fat.make ~managed:(Some (Obj.repr ba)) ~reftyp raw_address)

let bigarray_kind : type a b c d f l.
  < element: a;
    layout: l;
    ba_repr: f;
    bigarray: b;
    carray: c;
    dims: d > bigarray_class -> b -> (a, f) Bigarray.kind =
  function
  | Genarray -> Genarray.kind
  | Array1 -> Array1.kind
  | Array2 -> Array2.kind
  | Array3 -> Array3.kind

let bigarray_start spec ba = _bigarray_start (bigarray_kind spec ba) ba

let array_of_bigarray : type a b c d e.
  < element: a;
    layout: Bigarray.c_layout;
    ba_repr: e;
    bigarray: b;
    carray: c;
    dims: d > bigarray_class -> b -> c
  = fun spec ba ->
    let CPointer p as element_ptr =
      bigarray_start spec ba in
    match spec with
  | Genarray ->
    let ds = Genarray.dims ba in
    CArray.from_ptr element_ptr (Array.fold_left ( * ) 1 ds)
  | Array1 ->
    let d = Array1.dim ba in
    CArray.from_ptr element_ptr d
  | Array2 ->
    let d1 = Array2.dim1 ba and d2 = Array2.dim2 ba in
    CArray.from_ptr (castp (array d2 (Fat.reftype p)) element_ptr) d1
  | Array3 ->
    let d1 = Array3.dim1 ba and d2 = Array3.dim2 ba and d3 = Array3.dim3 ba in
    CArray.from_ptr (castp (array d2 (array d3 (Fat.reftype p))) element_ptr) d1

let bigarray_elements : type a b c d f l.
   < element: a;
     layout: l;
     ba_repr: f;
     bigarray: b;
     carray: c;
     dims: d > bigarray_class -> d -> int
  = fun spec dims -> match spec, dims with
   | Genarray, ds -> Array.fold_left ( * ) 1 ds
   | Array1, d -> d
   | Array2, (d1, d2) -> d1 * d2
   | Array3, (d1, d2, d3) -> d1 * d2 * d3

let bigarray_of_ptr spec dims kind ptr =
  !@ (castp (bigarray spec dims kind) ptr)

let fortran_bigarray_of_ptr spec dims kind ptr =
  !@ (castp (fortran_bigarray spec dims kind) ptr)

let array_dims : type a b c d f l.
   < element: a;
     layout: l;
     ba_repr: f;
     bigarray: b;
     carray: c carray;
     dims: d > bigarray_class -> c carray -> d =
   let unsupported () = raise (Unsupported "taking dimensions of non-array type") in
   fun spec a -> match spec with
   | Genarray -> [| a.alength |]
   | Array1 -> a.alength
   | Array2 ->
     begin match a.astart with
     | CPointer p ->
       begin match Fat.reftype p with
       | Array (_, n) -> (a.alength, n)
       | _ -> unsupported ()
       end
    end
   | Array3 ->
     begin match a.astart with
     | CPointer p ->
       begin match Fat.reftype p with
       |  Array (Array (_, m), n) -> (a.alength, n, m)
       | _ -> unsupported ()
       end
     end

let bigarray_of_array spec kind a =
  let dims = array_dims spec a in
  !@ (castp (bigarray spec dims kind) (CArray.start a))

let genarray = Genarray
let array1 = Array1
let array2 = Array2
let array3 = Array3
let typ_of_bigarray_kind k = Primitive (Ctypes_bigarray.prim_of_kind k)

let string_from_ptr (CPointer p) ~length:len =
  if len < 0 then invalid_arg "Ctypes.string_from_ptr"
  else Stubs.string_of_array p ~len

let ocaml_string_start str =
  OCamlRef (0, str, String)

let ocaml_bytes_start str =
  OCamlRef (0, str, Bytes)

let ocaml_float_array_start arr =
  OCamlRef (0, arr, FloatArray)

module Root =
struct
  module Stubs = Ctypes_roots_stubs

  (* Roots are not managed values so it's safe to call unsafe_raw_addr. *)
  let raw_addr : unit ptr -> Raw.t =
    fun (CPointer p) -> Fat.unsafe_raw_addr p

  let create : 'a. 'a -> unit ptr =
    fun v -> CPointer (make_unmanaged ~reftyp:void (Stubs.root v))

  let get : 'a. unit ptr -> 'a =
    fun p -> Stubs.get (raw_addr p)

  let set : 'a. unit ptr -> 'a -> unit =
    fun p v -> Stubs.set (raw_addr p) v
  
  let release : 'a. unit ptr -> unit =
    fun p -> Stubs.release (raw_addr p)
end

let is_null (CPointer p) = Fat.is_null p