package coq-lsp

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type definition_object_kind = Decls.definition_object_kind =
  1. | Definition
  2. | Coercion
  3. | SubClass
  4. | CanonicalStructure
  5. | Example
  6. | Fixpoint
  7. | CoFixpoint
  8. | Scheme
  9. | StructureComponent
  10. | IdentityCoercion
  11. | Instance
  12. | Method
  13. | Let
  14. | LetContext
val definition_object_kind_of_sexp : Sexplib0.Sexp.t -> definition_object_kind
val sexp_of_definition_object_kind : definition_object_kind -> Sexplib0.Sexp.t
val definition_object_kind_to_yojson : definition_object_kind -> Yojson.Safe.t
val hash_fold_definition_object_kind : Base.Hash.state -> definition_object_kind -> Base.Hash.state
val hash_definition_object_kind : definition_object_kind -> Base.Hash.hash_value
val compare_definition_object_kind : definition_object_kind -> definition_object_kind -> int
type theorem_kind = Decls.theorem_kind =
  1. | Theorem
  2. | Lemma
  3. | Fact
  4. | Remark
  5. | Property
  6. | Proposition
  7. | Corollary
val theorem_kind_of_sexp : Sexplib0.Sexp.t -> theorem_kind
val sexp_of_theorem_kind : theorem_kind -> Sexplib0.Sexp.t
val theorem_kind_to_yojson : theorem_kind -> Yojson.Safe.t
val hash_fold_theorem_kind : Base.Hash.state -> theorem_kind -> Base.Hash.state
val hash_theorem_kind : theorem_kind -> Base.Hash.hash_value
val compare_theorem_kind : theorem_kind -> theorem_kind -> int
type assumption_object_kind = Decls.assumption_object_kind =
  1. | Definitional
  2. | Logical
  3. | Conjectural
  4. | Context
val assumption_object_kind_of_sexp : Sexplib0.Sexp.t -> assumption_object_kind
val sexp_of_assumption_object_kind : assumption_object_kind -> Sexplib0.Sexp.t
val assumption_object_kind_to_yojson : assumption_object_kind -> Yojson.Safe.t
val hash_fold_assumption_object_kind : Base.Hash.state -> assumption_object_kind -> Base.Hash.state
val hash_assumption_object_kind : assumption_object_kind -> Base.Hash.hash_value
val compare_assumption_object_kind : assumption_object_kind -> assumption_object_kind -> int
type logical_kind = Decls.logical_kind =
  1. | IsPrimitive
  2. | IsSymbol
  3. | IsAssumption of assumption_object_kind
  4. | IsDefinition of definition_object_kind
  5. | IsProof of theorem_kind
val logical_kind_of_sexp : Sexplib0.Sexp.t -> logical_kind
val sexp_of_logical_kind : logical_kind -> Sexplib0.Sexp.t
val logical_kind_to_yojson : logical_kind -> Yojson.Safe.t
val hash_fold_logical_kind : Base.Hash.state -> logical_kind -> Base.Hash.state
val hash_logical_kind : logical_kind -> Base.Hash.hash_value
val compare_logical_kind : logical_kind -> logical_kind -> int
OCaml

Innovation. Community. Security.