Source file univ.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
open Pp
open Util
module UGlobal = struct
open Names
type t = {
library : DirPath.t;
process : string;
uid : int;
}
let make library process uid = { library; process; uid }
let repr x = (x.library, x.process, x.uid)
let equal u1 u2 =
Int.equal u1.uid u2.uid &&
DirPath.equal u1.library u2.library &&
String.equal u1.process u2.process
let hash u = Hashset.Combine.combine3 u.uid (String.hash u.process) (DirPath.hash u.library)
let compare u1 u2 =
let c = Int.compare u1.uid u2.uid in
if c <> 0 then c
else
let c = DirPath.compare u1.library u2.library in
if c <> 0 then c
else String.compare u1.process u2.process
let to_string { library = d; process = s; uid = n } =
DirPath.to_string d ^
(if CString.is_empty s then "" else "." ^ s) ^
"." ^ string_of_int n
end
module RawLevel =
struct
type t =
| Set
| Level of UGlobal.t
| Var of int
let equal x y =
x == y ||
match x, y with
| Set, Set -> true
| Level l, Level l' -> UGlobal.equal l l'
| Var n, Var n' -> Int.equal n n'
| _ -> false
let compare u v =
match u, v with
| Set, Set -> 0
| Set, _ -> -1
| _, Set -> 1
| Level l1, Level l2 -> UGlobal.compare l1 l2
| Level _, _ -> -1
| _, Level _ -> 1
| Var n, Var m -> Int.compare n m
let hequal x y =
x == y ||
match x, y with
| Set, Set -> true
| UGlobal.(Level { library = d; process = s; uid = n }, Level { library = d'; process = s'; uid = n' }) ->
n == n' && s==s' && d == d'
| Var n, Var n' -> n == n'
| _ -> false
let hcons = function
| Set as x -> x
| UGlobal.(Level { library = d; process = s; uid = n }) as x ->
let s' = CString.hcons s in
let d' = Names.DirPath.hcons d in
if s' == s && d' == d then x else Level (UGlobal.make d' s' n)
| Var _n as x -> x
open Hashset.Combine
let hash = function
| Set -> combinesmall 1 2
| Var n -> combinesmall 2 n
| Level l -> combinesmall 3 (UGlobal.hash l)
end
module Level = struct
type raw_level = RawLevel.t =
| Set
| Level of UGlobal.t
| Var of int
(** Embed levels with their hash value *)
type t = {
hash : int;
data : RawLevel.t }
let equal x y =
x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data
let hash x = x.hash
let data x = x.data
(** Hashcons on levels + their hash *)
module Self = struct
type nonrec t = t
type u = unit
let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data
let hash x = x.hash
let hashcons () x =
let data' = RawLevel.hcons x.data in
if x.data == data' then x else { x with data = data' }
end
let hcons =
let module H = Hashcons.Make(Self) in
Hashcons.simple_hcons H.generate H.hcons ()
let make l = hcons { hash = RawLevel.hash l; data = l }
let set = make Set
let is_small x =
match data x with
| Level _ -> false
| Var _ -> false
| Set -> true
let is_set x =
match data x with
| Set -> true
| _ -> false
let compare u v =
if u == v then 0
else RawLevel.compare (data u) (data v)
let to_string x =
match data x with
| Set -> "Set"
| Level l -> UGlobal.to_string l
| Var n -> "Var(" ^ string_of_int n ^ ")"
let raw_pr u = str (to_string u)
let pr = raw_pr
let vars = Array.init 20 (fun i -> make (Var i))
let var n =
if n < 20 then vars.(n) else make (Var n)
let var_index u =
match data u with
| Var n -> Some n | _ -> None
let make qid = make (Level qid)
let name u =
match data u with
| Level l -> Some l
| _ -> None
(** Level maps *)
module Map = struct
module Self = struct type nonrec t = t let hash = hash let compare = compare end
module M = HMap.Make (Self)
include M
let lunion l r =
union (fun _k l _r -> Some l) l r
let diff ext orig =
fold (fun u v acc ->
if mem u orig then acc
else add u v acc)
ext empty
let pr prl f m =
h (prlist_with_sep fnl (fun (u, v) ->
prl u ++ f v) (bindings m))
end
module Set = struct
include Map.Set
let pr prl s =
hov 1 (str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}")
end
end
type universe_level = Level.t
type universe_set = Level.Set.t
module Universe =
struct
module Expr =
struct
type t = Level.t * int
module ExprHash =
struct
type t = Level.t * int
type u = Level.t -> Level.t
let hashcons hdir (b,n as x) =
let b' = hdir b in
if b' == b then x else (b',n)
let eq l1 l2 =
l1 == l2 ||
match l1,l2 with
| (b,n), (b',n') -> b == b' && n == n'
let hash (x, n) = n + Level.hash x
end
module H = Hashcons.Make(ExprHash)
let hcons =
Hashcons.simple_hcons H.generate H.hcons Level.hcons
let make l = (l, 0)
let compare u v =
if u == v then 0
else
let (x, n) = u and (x', n') = v in
let c = Int.compare n n' in
if Int.equal 0 c then Level.compare x x'
else c
let set = hcons (Level.set, 0)
let type1 = hcons (Level.set, 1)
let is_small = function
| (l,0) -> Level.is_small l
| _ -> false
let equal x y = x == y ||
(let (u,n) = x and (v,n') = y in
Int.equal n n' && Level.equal u v)
let hash = ExprHash.hash
let successor (u,n as e) =
if is_small e then type1
else (u, n + 1)
type super_result =
SuperSame of bool
| SuperDiff of int
(** [super u v] compares two level expressions,
returning [SuperSame] if they refer to the same level at potentially different
increments or [SuperDiff] if they are different. The booleans indicate if the
left expression is "smaller" than the right one in both cases. *)
let super (u,n) (v,n') =
let cmp = Level.compare u v in
if Int.equal cmp 0 then SuperSame (n < n')
else SuperDiff cmp
let pr_with f (v, n) =
if Int.equal n 0 then f v
else f v ++ str"+" ++ int n
let is_level = function
| (_v, 0) -> true
| _ -> false
let level = function
| (v,0) -> Some v
| _ -> None
let get_level (v,_n) = v
let map f (v, n as x) =
let v' = f v in
if v' == v then x
else (v', n)
end
type t = Expr.t list
let tip l = [l]
let cons x l = x :: l
let rec hash = function
| [] -> 0
| e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l)
let equal x y = x == y || List.equal Expr.equal x y
let compare x y = if x == y then 0 else List.compare Expr.compare x y
module Huniv = Hashcons.Hlist(Expr)
let hcons = Hashcons.simple_hcons Huniv.generate Huniv.hcons Expr.hcons
module Self = struct type nonrec t = t let compare = compare end
module Map = CMap.Make(Self)
module Set = CSet.Make(Self)
let make l = tip (Expr.make l)
let tip x = tip x
let pr f l = match l with
| [u] -> Expr.pr_with f u
| _ ->
str "max(" ++ hov 0
(prlist_with_sep pr_comma (Expr.pr_with f) l) ++
str ")"
let raw_pr l = pr Level.raw_pr l
let is_level l = match l with
| [l] -> Expr.is_level l
| _ -> false
let rec is_levels l = match l with
| l :: r -> Expr.is_level l && is_levels r
| [] -> true
let level l = match l with
| [l] -> Expr.level l
| _ -> None
let levels l =
let fold acc x =
let l = Expr.get_level x in
Level.Set.add l acc
in
List.fold_left fold Level.Set.empty l
let is_small u =
match u with
| [l] -> Expr.is_small l
| _ -> false
let type0 = tip Expr.set
let type1 = tip Expr.type1
let is_type0 x = equal type0 x
let super l =
if is_small l then type1
else
List.Smart.map (fun x -> Expr.successor x) l
let rec merge_univs l1 l2 =
match l1, l2 with
| [], _ -> l2
| _, [] -> l1
| h1 :: t1, h2 :: t2 ->
let open Expr in
(match super h1 h2 with
| SuperSame true -> merge_univs t1 l2
| SuperSame false -> merge_univs l1 t2
| SuperDiff c ->
if c <= 0
then cons h1 (merge_univs t1 l2)
else cons h2 (merge_univs l1 t2))
let sort u =
let rec aux a l =
match l with
| b :: l' ->
let open Expr in
(match super a b with
| SuperSame false -> aux a l'
| SuperSame true -> l
| SuperDiff c ->
if c <= 0 then cons a l
else cons b (aux a l'))
| [] -> cons a l
in
List.fold_right (fun a acc -> aux a acc) u []
let sup x y = merge_univs x y
let exists = List.exists
let for_all = List.for_all
let repr x : t = x
let unrepr l =
assert (not (List.is_empty l));
sort l
end
type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq
let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1
type univ_constraint = Level.t * constraint_type * Level.t
let pr_constraint_type op =
let op_str = match op with
| Lt -> " < "
| Le -> " <= "
| Eq -> " = "
in str op_str
module UConstraintOrd =
struct
type t = univ_constraint
let compare (u,c,v) (u',c',v') =
let i = constraint_type_ord c c' in
if not (Int.equal i 0) then i
else
let i' = Level.compare u u' in
if not (Int.equal i' 0) then i'
else Level.compare v v'
end
module Constraints =
struct
module S = Set.Make(UConstraintOrd)
include S
let pr prl c =
v 0 (prlist_with_sep spc (fun (u1,op,u2) ->
hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2))
(elements c))
end
module Hconstraint =
Hashcons.Make(
struct
type t = univ_constraint
type u = universe_level -> universe_level
let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
let eq (l1,k,l2) (l1',k',l2') =
l1 == l1' && k == k' && l2 == l2'
let hash = Hashtbl.hash
end)
module Hconstraints =
Hashcons.Make(
struct
type t = Constraints.t
type u = univ_constraint -> univ_constraint
let hashcons huc s =
Constraints.fold (fun x -> Constraints.add (huc x)) s Constraints.empty
let eq s s' =
List.for_all2eq (==)
(Constraints.elements s)
(Constraints.elements s')
let hash = Hashtbl.hash
end)
let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint
(** A value with universe constraints. *)
type 'a constrained = 'a * Constraints.t
let constraints_of (_, cst) = cst
(** Constraints functions. *)
type 'a constraint_function = 'a -> 'a -> Constraints.t -> Constraints.t
let enforce_eq_level u v c =
if Level.equal u v then c
else Constraints.add (u,Eq,v) c
let enforce_leq_level u v c =
if Level.equal u v then c else Constraints.add (u,Le,v) c
let univ_level_mem u v =
List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v
let univ_level_rem u v min =
match Universe.level v with
| Some u' -> if Level.equal u u' then min else v
| None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v
(** Universe polymorphism *)
(** A universe level substitution, note that no algebraic universes are
involved *)
type universe_level_subst = universe_level Level.Map.t
(** A set of universes with universe constraints.
We linearize the set to a list after typechecking.
Beware, representation could change.
*)
module ContextSet =
struct
type t = universe_set constrained
let empty = (Level.Set.empty, Constraints.empty)
let is_empty (univs, cst) = Level.Set.is_empty univs && Constraints.is_empty cst
let equal (univs, cst as x) (univs', cst' as y) =
x == y || (Level.Set.equal univs univs' && Constraints.equal cst cst')
let of_set s = (s, Constraints.empty)
let singleton l = of_set (Level.Set.singleton l)
let union (univs, cst as x) (univs', cst' as y) =
if x == y then x
else Level.Set.union univs univs', Constraints.union cst cst'
let append (univs, cst) (univs', cst') =
let univs = Level.Set.fold Level.Set.add univs univs' in
let cst = Constraints.fold Constraints.add cst cst' in
(univs, cst)
let diff (univs, cst) (univs', cst') =
Level.Set.diff univs univs', Constraints.diff cst cst'
let add_universe u (univs, cst) =
Level.Set.add u univs, cst
let add_constraints cst' (univs, cst) =
univs, Constraints.union cst cst'
let pr prl (univs, cst as ctx) =
if is_empty ctx then mt() else
hov 0 (h (Level.Set.pr prl univs ++ str " |=") ++ brk(1,2) ++ h (Constraints.pr prl cst))
let constraints (_univs, cst) = cst
let levels (univs, _cst) = univs
let size (univs,_) = Level.Set.cardinal univs
end
type universe_context_set = ContextSet.t
(** A value in a universe context (resp. context set). *)
type 'a in_universe_context_set = 'a * universe_context_set
(** Substitutions. *)
let empty_level_subst = Level.Map.empty
let is_empty_level_subst = Level.Map.is_empty
(** Substitution functions *)
(** With level to level substitutions. *)
let subst_univs_level_level subst l =
try Level.Map.find l subst
with Not_found -> l
let subst_univs_level_universe subst u =
let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
let u' = List.Smart.map f u in
if u == u' then u
else Universe.sort u'
let subst_univs_level_constraint subst (u,d,v) =
let u' = subst_univs_level_level subst u
and v' = subst_univs_level_level subst v in
if d != Lt && Level.equal u' v' then None
else Some (u',d,v')
let subst_univs_level_constraints subst csts =
Constraints.fold
(fun c -> Option.fold_right Constraints.add (subst_univs_level_constraint subst c))
csts Constraints.empty
(** Pretty-printing *)
let pr_universe_context_set = ContextSet.pr
let pr_universe_level_subst prl =
Level.Map.pr prl (fun u -> str" := " ++ prl u ++ spc ())
module Huniverse_set =
Hashcons.Make(
struct
type t = universe_set
type u = universe_level -> universe_level
let hashcons huc s =
Level.Set.fold (fun x -> Level.Set.add (huc x)) s Level.Set.empty
let eq s s' =
Level.Set.equal s s'
let hash = Hashtbl.hash
end)
let hcons_universe_set =
Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons
let hcons_universe_context_set (v, c) =
(hcons_universe_set v, hcons_constraints c)
let hcons_univ x = Universe.hcons x